fffiloni commited on
Commit
adf3e3f
·
1 Parent(s): 5a679fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -75
app.py CHANGED
@@ -2,10 +2,10 @@ import gradio as gr
2
  import os
3
  import shutil
4
 
5
- from huggingface_hub import snapshot_download
6
  import numpy as np
7
  from scipy.io import wavfile
8
-
9
  model_ids = [
10
  'suno/bark',
11
  ]
@@ -13,7 +13,7 @@ model_ids = [
13
  for model_id in model_ids:
14
  model_name = model_id.split('/')[-1]
15
  snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
16
-
17
  #from TTS.tts.configs.bark_config import BarkConfig
18
  #from TTS.tts.models.bark import Bark
19
 
@@ -89,57 +89,9 @@ def infer(prompt, input_wav_file):
89
  for item in contents:
90
  print(item)
91
 
92
- return "output.wav", f"bark_voices/{file_name}/{contents[1]}", gr.update(visible=False), gr.update(visible=True)
93
-
94
- def infer_with_npz(prompt, input_wav_file):
95
- print("NEW GENERATION WITH EXISTING .NPZ")
96
- # Path to your WAV file
97
- source_path = input_wav_file
98
- # Extract the file name without the extension
99
- file_name = os.path.splitext(os.path.basename(source_path))[0]
100
- # List all the files and subdirectories in the given directory
101
- contents = os.listdir(f"bark_voices/{file_name}")
102
- # Print the contents
103
- for item in contents:
104
- print(item)
105
-
106
- first_item = contents[0] # Index 0 corresponds to the first item
107
- item_path = os.path.join(f"bark_voices/{file_name}", first_item)
108
- os.remove(item_path)
109
 
110
- """
111
- print("BEGINNING GENERATION")
112
- # cloning a speaker.
113
- text = prompt
114
- # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.npz`
115
- output_dict = model.synthesize(
116
- text,
117
- config,
118
- speaker_id=f"{file_name}",
119
- voice_dirs="bark_voices/"
120
- )
121
-
122
- print(output_dict)
123
 
124
- print("WRITING WAVE FILE")
125
-
126
- sample_rate = 24000 # Replace with the actual sample rate
127
-
128
- wavfile.write(
129
- 'output.wav',
130
- sample_rate,
131
- output_dict['wav']
132
- )
133
- """
134
- # Print again the contents
135
- contents = os.listdir(f"bark_voices/{file_name}")
136
- for item in contents:
137
- print(item)
138
-
139
- return 'output.wav'
140
-
141
- def uploaded_audio():
142
- return gr.update(visible=True), gr.update(visible=False)
143
  css = """
144
  #col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
145
  """
@@ -180,29 +132,7 @@ with gr.Blocks(css=css) as demo:
180
  ],
181
  outputs = [
182
  cloned_out,
183
- npz_file,
184
- submit_btn,
185
- submit_with_npz_btn
186
- ]
187
- )
188
-
189
- submit_with_npz_btn.click(
190
- fn = infer_with_npz,
191
- inputs = [
192
- prompt,
193
- audio_in
194
- ],
195
- outputs = [
196
- cloned_out
197
- ]
198
- )
199
-
200
- audio_in.upload(
201
- fn=uploaded_audio,
202
- inputs=[],
203
- outputs=[
204
- submit_btn,
205
- submit_with_npz_btn
206
  ]
207
  )
208
 
 
2
  import os
3
  import shutil
4
 
5
+ #from huggingface_hub import snapshot_download
6
  import numpy as np
7
  from scipy.io import wavfile
8
+ """
9
  model_ids = [
10
  'suno/bark',
11
  ]
 
13
  for model_id in model_ids:
14
  model_name = model_id.split('/')[-1]
15
  snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
16
+ """
17
  #from TTS.tts.configs.bark_config import BarkConfig
18
  #from TTS.tts.models.bark import Bark
19
 
 
89
  for item in contents:
90
  print(item)
91
 
92
+ return "output.wav", f"bark_voices/{file_name}/{contents[1]}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  css = """
96
  #col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
97
  """
 
132
  ],
133
  outputs = [
134
  cloned_out,
135
+ npz_file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  ]
137
  )
138