import gradio as gr import os import shutil #from huggingface_hub import snapshot_download import numpy as np from scipy.io import wavfile from pydub import AudioSegment file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD") """ model_ids = [ 'suno/bark', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') from TTS.tts.configs.bark_config import BarkConfig from TTS.tts.models.bark import Bark #os.environ['CUDA_VISIBLE_DEVICES'] = '1' config = BarkConfig() model = Bark.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True) """ from TTS.api import TTS tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True) def cut_wav(input_path, max_duration): # Load the WAV file audio = AudioSegment.from_wav(input_path) # Calculate the duration of the audio audio_duration = len(audio) / 1000 # Convert milliseconds to seconds # Determine the duration to cut (maximum of max_duration and actual audio duration) cut_duration = min(max_duration, audio_duration) # Cut the audio cut_audio = audio[:int(cut_duration * 1000)] # Convert seconds to milliseconds # Get the input file name without extension file_name = os.path.splitext(os.path.basename(input_path))[0] # Construct the output file path with the original file name and "_cut" suffix output_path = f"{file_name}_cut.wav" # Save the cut audio as a new WAV file cut_audio.export(output_path, format="wav") return output_path def infer(prompt, input_wav_file): # Path to your WAV file source_path = input_wav_file # Destination directory destination_directory = "bark_voices" # Extract the file name without the extension file_name = os.path.splitext(os.path.basename(source_path))[0] # Construct the full destination directory path destination_path = os.path.join(destination_directory, file_name) # Create the new directory os.makedirs(destination_path, exist_ok=True) # Move the WAV file to the new directory shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav")) """ text = prompt print("SYNTHETIZING...") # with random speaker #output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) # cloning a speaker. # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz` output_dict = model.synthesize( text, config, speaker_id=f"{file_name}", voice_dirs="bark_voices/", gpu=True ) print(output_dict) sample_rate = 24000 # Replace with the actual sample rate print("WRITING WAVE FILE") wavfile.write( 'output.wav', sample_rate, output_dict['wav'] ) """ tts.tts_to_file(text=prompt, file_path="output.wav", voice_dir="bark_voices/", speaker=f"{file_name}") # List all the files and subdirectories in the given directory contents = os.listdir(f"bark_voices/{file_name}") # Print the contents for item in contents: print(item) tts_video = gr.make_waveform(audio="output.wav") return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True) css = """ #col-container {max-width: 780px; margin-left: auto; margin-right: auto;} img[src*='#center'] { display: block; margin: auto; } .footer { margin-bottom: 45px; margin-top: 10px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .disclaimer { text-align: left; } .disclaimer > p { font-size: .8rem; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("""
Mimic any voice character in less than 2 minutes with this Coqui TTS + Bark demo !
Upload a clean 20 seconds WAV file of the vocal persona you want to mimic,
type your text-to-speech prompt and hit submit !
I hold no responsibility for the utilization or outcomes of audio content produced using the semantic constructs generated by this model.
Please ensure that any application of this technology remains within legal and ethical boundaries.
It is important to utilize this technology for ethical and legal purposes, upholding the standards of creativity and innovation.