File size: 2,465 Bytes
e348efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9814f59
7432eb1
e348efe
 
 
 
1fed219
 
9814f59
 
c96ea95
 
 
 
 
01127eb
a03faf2
c96ea95
 
9814f59
 
 
e348efe
 
 
 
addace4
 
 
 
 
e844d1b
addace4
 
 
 
 
 
 
90e7fa2
addace4
 
e844d1b
90e7fa2
e844d1b
90e7fa2
 
 
e844d1b
 
addace4
e844d1b
 
c96ea95
4516329
b3d631d
c96ea95
 
addace4
9814f59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)

from langchain.llms import HuggingFaceHub
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300})

from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()

from langchain.vectorstores import Chroma

from langchain.chains import RetrievalQA

def pdf_changes(pdf_doc):
    loader = OnlinePDFLoader(pdf_doc.name)
    documents = loader.load()
    texts = text_splitter.split_documents(documents)
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    global qa 
    qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True)
    return "Ready"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0])
    history[-1][1] = response['result']
    return history

def infer(question):
    
    query = question
    result = qa({"query": query})

    return result

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with PDF</h1>
    <p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
    when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        
        with gr.Column():
            pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
            with gr.Row():
                langchain_status = gr.Textbox(label="Status")
                load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        with gr.Row():
            question = gr.Textbox(label="Question")
            clear = gr.Button("Clear")
        
    load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()