File size: 1,796 Bytes
e348efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9814f59
7432eb1
e348efe
 
 
 
1fed219
 
9814f59
 
c96ea95
 
 
 
 
e9d344a
c96ea95
 
 
9814f59
 
 
e348efe
 
 
 
9814f59
 
4516329
9814f59
4516329
81a5edc
c96ea95
 
 
9814f59
4516329
c96ea95
 
b3d631d
c96ea95
 
9814f59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)

from langchain.llms import HuggingFaceHub
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300})

from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()

from langchain.vectorstores import Chroma

from langchain.chains import RetrievalQA

def pdf_changes(pdf_doc):
    loader = OnlinePDFLoader(pdf_doc.name)
    documents = loader.load()
    texts = text_splitter.split_documents(documents)
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    global qa 
    qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True)
    return "Ready"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history)
    history[-1][1] = response
    return history

def infer(question):
    
    query = question
    result = qa({"query": query})

    return result

with gr.Blocks() as demo:
    with gr.Column():
        pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
        langchain_status = gr.Textbox()
        load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question")
        
    
    load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False)
    

    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )

demo.launch()