Spaces:
Sleeping
Sleeping
File size: 1,787 Bytes
e348efe 9814f59 7432eb1 e348efe 1fed219 9814f59 c96ea95 9814f59 e348efe 9814f59 4516329 9814f59 4516329 81a5edc c96ea95 9814f59 4516329 c96ea95 9814f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)
from langchain.llms import HuggingFaceHub
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300})
from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def pdf_changes(pdf_doc):
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history):
history[-1][1] = response
return history
def infer(question):
query = question
result = qa({"query": query})
return result
with gr.Blocks() as demo:
with gr.Column():
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
langchain_status = gr.Textbox()
load_pdf = gr.Button("Load pdf to langchain")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question")
load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False)
question.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
bot, chatbot, chatbot
)
demo.launch() |