|
""" |
|
Copyright (c) 2022, salesforce.com, inc. |
|
All rights reserved. |
|
SPDX-License-Identifier: BSD-3-Clause |
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
""" |
|
|
|
import logging |
|
import json |
|
import os |
|
|
|
import minigpt4.common.dist_utils as dist_utils |
|
from minigpt4.common.registry import registry |
|
from minigpt4.common.vqa_tools.vqa import VQA |
|
from minigpt4.common.vqa_tools.vqa_eval import VQAEval |
|
from minigpt4.tasks.base_task import BaseTask |
|
|
|
|
|
@registry.register_task("vqa") |
|
class VQATask(BaseTask): |
|
def __init__( |
|
self, |
|
num_beams, |
|
max_len, |
|
min_len, |
|
evaluate, |
|
num_ans_candidates, |
|
inference_method="rank", |
|
prompt="", |
|
): |
|
super().__init__() |
|
|
|
self.num_beams = num_beams |
|
self.max_len = max_len |
|
self.min_len = min_len |
|
|
|
self.evaluate = evaluate |
|
self.inference_method = inference_method |
|
self.num_ans_candidates = num_ans_candidates |
|
self.prompt = prompt |
|
|
|
self.answer_list = None |
|
|
|
self.ques_files = dict() |
|
self.anno_files = dict() |
|
|
|
@classmethod |
|
def setup_task(cls, cfg): |
|
run_cfg = cfg.run_cfg |
|
|
|
num_beams = run_cfg.get("num_beams", 3) |
|
max_len = run_cfg.get("max_len", 10) |
|
min_len = run_cfg.get("min_len", 1) |
|
|
|
evaluate = run_cfg.get("evaluate", False) |
|
|
|
inference_method = run_cfg.get("inference_method", "rank") |
|
num_ans_candidates = run_cfg.get("num_ans_candidates", 128) |
|
prompt = run_cfg.get("prompt", "") |
|
|
|
return cls( |
|
num_beams=num_beams, |
|
max_len=max_len, |
|
min_len=min_len, |
|
evaluate=evaluate, |
|
num_ans_candidates=num_ans_candidates, |
|
inference_method=inference_method, |
|
prompt=prompt, |
|
) |
|
|
|
def build_datasets(self, cfg): |
|
datasets = super().build_datasets(cfg) |
|
|
|
|
|
for dataset in datasets.values(): |
|
for split in dataset: |
|
if ( |
|
hasattr(dataset[split], "coco_fmt_qust_file") |
|
and dataset[split].coco_fmt_qust_file is not None |
|
): |
|
self.ques_files[split] = dataset[split].coco_fmt_qust_file |
|
self.anno_files[split] = dataset[split].coco_fmt_anno_file |
|
|
|
try: |
|
self.answer_list = dataset[split].answer_list |
|
except AttributeError: |
|
|
|
pass |
|
|
|
if len(self.ques_files) > 0: |
|
assert len(self.ques_files) == len( |
|
self.anno_files |
|
), "Only support one split for evaluation." |
|
|
|
return datasets |
|
|
|
def valid_step(self, model, samples): |
|
answers = model.predict_answers( |
|
samples=samples, |
|
answer_list=self.answer_list, |
|
inference_method=self.inference_method, |
|
num_beams=self.num_beams, |
|
max_len=self.max_len, |
|
min_len=self.min_len, |
|
num_ans_candidates=self.num_ans_candidates, |
|
prompt=self.prompt, |
|
) |
|
pred_qa_pairs = [] |
|
|
|
question_id = samples["question_id"] |
|
for answer, ques_id in zip(answers, question_id): |
|
ques_id = int(ques_id.item()) |
|
pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) |
|
|
|
return pred_qa_pairs |
|
|
|
def after_evaluation(self, val_result, split_name, result_dir): |
|
|
|
result_file = self.save_result( |
|
val_result, |
|
result_dir=result_dir, |
|
filename=split_name, |
|
remove_duplicate="question_id", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
@dist_utils.main_process |
|
def _report_metrics(self, result_file, split): |
|
""" |
|
Use official VQA evaluation script to report metrics. |
|
""" |
|
metrics = {} |
|
|
|
if split in self.ques_files and split in self.anno_files: |
|
vqa = VQA(self.anno_files[split], self.ques_files[split]) |
|
vqa_result = vqa.loadRes( |
|
resFile=result_file, quesFile=self.ques_files[split] |
|
) |
|
|
|
|
|
|
|
vqa_scorer = VQAEval(vqa, vqa_result, n=2) |
|
logging.info("Start VQA evaluation.") |
|
vqa_scorer.evaluate() |
|
|
|
|
|
overall_acc = vqa_scorer.accuracy["overall"] |
|
metrics["agg_metrics"] = overall_acc |
|
|
|
|
|
logging.info("Overall Accuracy is: %.02f\n" % overall_acc) |
|
logging.info("Per Answer Type Accuracy is the following:") |
|
|
|
for ans_type in vqa_scorer.accuracy["perAnswerType"]: |
|
logging.info( |
|
"%s : %.02f" |
|
% (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type]) |
|
) |
|
metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type] |
|
|
|
with open( |
|
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
) as f: |
|
f.write(json.dumps(metrics) + "\n") |
|
|
|
return metrics |
|
|
|
@registry.register_task("gqa") |
|
class GQATask(VQATask): |
|
def valid_step(self, model, samples): |
|
answers = model.predict_answers( |
|
samples=samples, |
|
answer_list=self.answer_list, |
|
inference_method=self.inference_method, |
|
num_beams=self.num_beams, |
|
max_len=self.max_len, |
|
min_len=self.min_len, |
|
num_ans_candidates=self.num_ans_candidates, |
|
prompt=self.prompt, |
|
) |
|
pred_qa_pairs = [] |
|
|
|
question_id = samples["question_id"] |
|
gt_answers = samples["answer"] |
|
|
|
for answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): |
|
ques_id = int(ques_id.item()) |
|
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": answer, "gt_ans": gt_answer}) |
|
|
|
return pred_qa_pairs |
|
|
|
@dist_utils.main_process |
|
def _report_metrics(self, result_file, split): |
|
""" |
|
TODO: add other evaluation metrics for GQA |
|
""" |
|
|
|
results = json.load(open(result_file, "r")) |
|
acc = [] |
|
vqa_tool = VQAEval() |
|
|
|
for res in results: |
|
if res["gt_ans"] is None: |
|
|
|
self._save_result_leaderboard(results) |
|
return |
|
|
|
gt_ans = res["gt_ans"] |
|
pred = res["pred_ans"] |
|
|
|
if self.inference_method == "generate": |
|
pred = vqa_tool.processPunctuation(pred) |
|
pred = vqa_tool.processDigitArticle(pred) |
|
|
|
vqa_acc = 1 if pred == gt_ans else 0 |
|
|
|
acc.append(vqa_acc) |
|
|
|
accuracy = sum(acc) / len(acc) * 100 |
|
metrics = {"agg_metrics": accuracy, "acc": accuracy} |
|
|
|
with open( |
|
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
) as f: |
|
f.write(json.dumps(metrics) + "\n") |
|
|
|
logging.info(metrics) |
|
|
|
return metrics |
|
|
|
|
|
@registry.register_task("scienceqa") |
|
class ScienceQATask(GQATask): |
|
def valid_step(self, model, samples): |
|
answers = model.predict_class( |
|
samples=samples, |
|
answer_list=self.answer_list, |
|
inference_method=self.inference_method, |
|
num_beams=self.num_beams, |
|
max_len=self.max_len, |
|
min_len=self.min_len, |
|
num_ans_candidates=self.num_ans_candidates, |
|
prompt=self.prompt, |
|
) |
|
pred_qa_pairs = [] |
|
|
|
question_id = samples["question_id"] |
|
gt_answers = samples["answer"] |
|
|
|
for answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): |
|
ques_id = int(ques_id.item()) |
|
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": answer, "gt_ans": gt_answer}) |
|
|
|
return pred_qa_pairs |
|
|
|
|
|
@registry.register_task("aok_vqa") |
|
class AOKVQATask(VQATask): |
|
def valid_step(self, model, samples): |
|
answers = model.predict_answers( |
|
samples=samples, |
|
answer_list=self.answer_list, |
|
inference_method=self.inference_method, |
|
num_beams=self.num_beams, |
|
max_len=self.max_len, |
|
min_len=self.min_len, |
|
num_ans_candidates=self.num_ans_candidates, |
|
) |
|
|
|
pred_qa_pairs = [] |
|
|
|
question_id = samples["question_id"] |
|
gt_answers = samples["direct_answers"] |
|
|
|
for pred_answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): |
|
pred_qa_pairs.append( |
|
{"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer} |
|
) |
|
|
|
return pred_qa_pairs |
|
|
|
@dist_utils.main_process |
|
def _report_metrics(self, result_file, split): |
|
""" |
|
Implementing accuracy computation for AOKVQA, see |
|
https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py#L45 for details. |
|
""" |
|
|
|
|
|
results = json.load(open(result_file, "r")) |
|
acc = [] |
|
|
|
for res in results: |
|
if res["gt_ans"] is None: |
|
|
|
self._save_result_leaderboard(results) |
|
return |
|
|
|
pred = res["pred_ans"] |
|
gt_ans = res["gt_ans"] |
|
|
|
num_match = sum([pred == gt for gt in gt_ans]) |
|
vqa_acc = min(1.0, num_match / 3.0) |
|
|
|
acc.append(vqa_acc) |
|
|
|
accuracy = sum(acc) / len(acc) * 100 |
|
metrics = {"agg_metrics": accuracy, "acc": accuracy} |
|
|
|
with open( |
|
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
) as f: |
|
f.write(json.dumps(metrics) + "\n") |
|
|
|
logging.info(metrics) |
|
|
|
return metrics |
|
|
|
@dist_utils.main_process |
|
def _save_result_leaderboard(self, results): |
|
""" |
|
Saving the results in the format required for leaderboard evaluation. |
|
|
|
[TODO] add support for multi-choice. |
|
""" |
|
result_leaderboard = dict() |
|
for res in results: |
|
result_leaderboard[res["question_id"]] = { |
|
"direct_answer": res["pred_ans"], |
|
"multiple_choice": "", |
|
} |
|
|
|
result_file = registry.get_path("result_dir") + "_leaderboard.json" |
|
|
|
with open(result_file, "w") as f: |
|
json.dump(result_leaderboard, f) |
|
|
|
|
|
logging.info(f"Saved results for leaderboard evaluation at {result_file}") |
|
|
|
|