fffiloni commited on
Commit
81b1f07
Β·
1 Parent(s): baf35b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -4,30 +4,29 @@ from PIL import Image
4
 
5
  from lambda_diffusers import StableDiffusionImageEmbedPipeline
6
 
7
- def main(
8
- input_im,
9
- scale=3.0,
10
- n_samples=2,
11
- steps=25,
12
- seed=0,
13
- ):
14
 
15
- generator = torch.Generator(device=device).manual_seed(int(seed))
16
-
17
  images_list = pipe(
18
  n_samples*[input_im],
19
  guidance_scale=scale,
20
  num_inference_steps=steps,
21
  generator=generator,
22
  )
23
-
24
- images = []
25
  for i, image in enumerate(images_list["sample"]):
26
  if(images_list["nsfw_content_detected"][i]):
27
  safe_image = Image.open(r"unsafe.png")
28
  images.append(safe_image)
29
  else:
30
  images.append(image)
 
 
 
 
 
 
 
 
 
31
  return images
32
 
33
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -40,7 +39,7 @@ pipe = pipe.to(device)
40
  inputs = [
41
  gr.Image(),
42
  gr.Slider(0, 25, value=3, step=1, label="Guidance scale"),
43
- gr.Slider(1, 2, value=1, step=1, label="Number images"),
44
  gr.Slider(5, 50, value=25, step=5, label="Steps"),
45
  gr.Number(0, labal="Seed", precision=0)
46
  ]
 
4
 
5
  from lambda_diffusers import StableDiffusionImageEmbedPipeline
6
 
7
+ def ask(input_im, scale, n_samples, steps, seed):
 
 
 
 
 
 
8
 
 
 
9
  images_list = pipe(
10
  n_samples*[input_im],
11
  guidance_scale=scale,
12
  num_inference_steps=steps,
13
  generator=generator,
14
  )
 
 
15
  for i, image in enumerate(images_list["sample"]):
16
  if(images_list["nsfw_content_detected"][i]):
17
  safe_image = Image.open(r"unsafe.png")
18
  images.append(safe_image)
19
  else:
20
  images.append(image)
21
+
22
+ def main(input_im, scale, n_samples, steps, seed):
23
+
24
+ generator = torch.Generator(device=device).manual_seed(int(seed))
25
+
26
+ images = []
27
+ ask(input_im, scale, n_samples, steps, seed)
28
+ ask(input_im, scale, n_samples, steps, seed)
29
+
30
  return images
31
 
32
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
39
  inputs = [
40
  gr.Image(),
41
  gr.Slider(0, 25, value=3, step=1, label="Guidance scale"),
42
+ gr.Slider(1, 2, value=2, step=1, label="Number images"),
43
  gr.Slider(5, 50, value=25, step=5, label="Steps"),
44
  gr.Number(0, labal="Seed", precision=0)
45
  ]