Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
hf_token = os.environ.get("HF_TOKEN")
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusion3Pipeline
|
6 |
+
from diffusers.models.controlnet_sd3 import ControlNetSD3Model
|
7 |
+
from diffusers.utils.torch_utils import randn_tensor
|
8 |
+
|
9 |
+
from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline
|
10 |
+
|
11 |
+
# load pipeline
|
12 |
+
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers'
|
13 |
+
pipe = StableDiffusion3CommonPipeline.from_pretrained(
|
14 |
+
base_model,
|
15 |
+
controlnet_list=['InstantX/SD3-Controlnet-Canny'],
|
16 |
+
hf_token=hf_token
|
17 |
+
)
|
18 |
+
pipe.to('cuda:0', torch.float16)
|
19 |
+
|
20 |
+
def infer(image_in, prompt):
|
21 |
+
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
|
22 |
+
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
23 |
+
# controlnet config
|
24 |
+
controlnet_conditioning = [
|
25 |
+
dict(
|
26 |
+
control_index=0,
|
27 |
+
control_image=load_image('https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg'),
|
28 |
+
control_weight=0.7,
|
29 |
+
control_pooled_projections='zeros'
|
30 |
+
)
|
31 |
+
]
|
32 |
+
# infer
|
33 |
+
image = pipe(
|
34 |
+
prompt=prompt,
|
35 |
+
negative_prompt=n_prompt,
|
36 |
+
controlnet_conditioning=controlnet_conditioning,
|
37 |
+
num_inference_steps=28,
|
38 |
+
guidance_scale=7.0,
|
39 |
+
height=1024,
|
40 |
+
width=1024,
|
41 |
+
latents=latents,
|
42 |
+
).images[0]
|
43 |
+
|
44 |
+
return image
|
45 |
+
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Column():
|
49 |
+
gr.Markdown("""
|
50 |
+
# SD3 ControlNet
|
51 |
+
""")
|
52 |
+
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
|
53 |
+
prompt = gr.Textbox(label="Prompt")
|
54 |
+
submit_btn = gr.Button("Submit")
|
55 |
+
result = gr.Image(label="Result")
|
56 |
+
|
57 |
+
submit_btn.click(
|
58 |
+
fn = infer,
|
59 |
+
inputs = [image_in, prompt],
|
60 |
+
outputs = [result],
|
61 |
+
show_api=False
|
62 |
+
)
|
63 |
+
demo.queue().launch()
|