Spaces:
Running
on
Zero
Running
on
Zero
add tile controlnet
Browse files
app.py
CHANGED
@@ -14,12 +14,9 @@ from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
|
14 |
from diffusers.utils import load_image
|
15 |
|
16 |
# load pipeline
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
controlnet=controlnet
|
21 |
-
)
|
22 |
-
pipe.to("cuda", torch.float16)
|
23 |
|
24 |
def resize_image(input_path, output_path, target_height):
|
25 |
# Open the input image
|
@@ -41,34 +38,57 @@ def resize_image(input_path, output_path, target_height):
|
|
41 |
return output_path, new_width, target_height
|
42 |
|
43 |
@spaces.GPU(duration=90)
|
44 |
-
def
|
45 |
|
46 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
# infer
|
58 |
image = pipe(
|
59 |
prompt=prompt,
|
60 |
negative_prompt=n_prompt,
|
61 |
-
control_image=
|
62 |
controlnet_conditioning_scale=control_weight,
|
63 |
num_inference_steps=inference_steps,
|
64 |
guidance_scale=guidance_scale,
|
65 |
).images[0]
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
image = image.resize((w, h), Image.LANCZOS)
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
css="""
|
74 |
#col-container{
|
@@ -82,28 +102,40 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
# SD3 ControlNet
|
83 |
|
84 |
Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
|
85 |
-
Model Card: [InstantX/SD3-Controlnet-Canny](https://huggingface.co/InstantX/SD3-Controlnet-Canny)
|
86 |
-
|
87 |
""")
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
outputs = [result, canny_used],
|
108 |
show_api=False
|
109 |
)
|
|
|
14 |
from diffusers.utils import load_image
|
15 |
|
16 |
# load pipeline
|
17 |
+
controlnet_canny = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
|
18 |
+
controlne_tile = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile")
|
19 |
+
|
|
|
|
|
|
|
20 |
|
21 |
def resize_image(input_path, output_path, target_height):
|
22 |
# Open the input image
|
|
|
38 |
return output_path, new_width, target_height
|
39 |
|
40 |
@spaces.GPU(duration=90)
|
41 |
+
def infer_canny(image_in, prompt, control_type, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)):
|
42 |
|
43 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
44 |
+
|
45 |
+
if control_type == "canny":
|
46 |
+
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
47 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
48 |
+
controlnet=controlnet_canny
|
49 |
+
)
|
50 |
+
|
51 |
+
# Canny preprocessing
|
52 |
+
image_to_canny = load_image(image_in)
|
53 |
+
image_to_canny = np.array(image_to_canny)
|
54 |
+
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
|
55 |
+
image_to_canny = image_to_canny[:, :, None]
|
56 |
+
image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
|
57 |
+
image_to_canny = Image.fromarray(image_to_canny)
|
58 |
+
|
59 |
+
control_image = image_to_canny
|
60 |
|
61 |
+
elif control_type == "tile":
|
62 |
+
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
63 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
64 |
+
controlnet=controlnet_tile
|
65 |
+
)
|
66 |
+
|
67 |
+
control_image = load_image(image_in)
|
68 |
+
|
69 |
+
|
70 |
+
pipe.to("cuda", torch.float16)
|
71 |
|
72 |
# infer
|
73 |
image = pipe(
|
74 |
prompt=prompt,
|
75 |
negative_prompt=n_prompt,
|
76 |
+
control_image=control_image,
|
77 |
controlnet_conditioning_scale=control_weight,
|
78 |
num_inference_steps=inference_steps,
|
79 |
guidance_scale=guidance_scale,
|
80 |
).images[0]
|
81 |
|
82 |
+
if control_type == "canny":
|
|
|
|
|
83 |
|
84 |
+
image_redim, w, h = resize_image(image_in, "resized_input.jpg", 1024)
|
85 |
+
image = image.resize((w, h), Image.LANCZOS)
|
86 |
+
|
87 |
+
return image, gr.update(value=image_to_canny, visible=True)
|
88 |
+
|
89 |
+
elif control_type == "tile":
|
90 |
+
return image, gr.update(value=None, visible=False)
|
91 |
+
|
92 |
|
93 |
css="""
|
94 |
#col-container{
|
|
|
102 |
# SD3 ControlNet
|
103 |
|
104 |
Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
|
|
|
|
|
105 |
""")
|
106 |
+
|
107 |
+
with gr.Column():
|
108 |
+
gr.Mardown("""
|
109 |
+
Model Card: [InstantX/SD3-Controlnet-Canny](https://huggingface.co/InstantX/SD3-Controlnet-Canny)
|
110 |
+
""")
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
|
114 |
+
prompt = gr.Textbox(label="Prompt")
|
115 |
+
control_type = gr.Radio(
|
116 |
+
label="Control type",
|
117 |
+
choices = [
|
118 |
+
"canny",
|
119 |
+
"tile"
|
120 |
+
],
|
121 |
+
value="canny"
|
122 |
+
)
|
123 |
+
with gr.Accordion("Advanced settings", open=False):
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Row():
|
126 |
+
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
|
127 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
|
128 |
+
control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
|
129 |
|
130 |
+
submit_canny_btn = gr.Button("Submit")
|
131 |
+
with gr.Column():
|
132 |
+
result = gr.Image(label="Result")
|
133 |
+
canny_used = gr.Image(label="Preprocessed Canny", visible=False)
|
134 |
+
|
135 |
+
|
136 |
+
submit_canny_btn.click(
|
137 |
+
fn = infer_canny,
|
138 |
+
inputs = [image_in, prompt, control_type, inference_steps, guidance_scale, control_weight],
|
139 |
outputs = [result, canny_used],
|
140 |
show_api=False
|
141 |
)
|