|
import spaces |
|
import gradio as gr |
|
from gradio_client import Client |
|
moondream_client = Client("https://vikhyatk-moondream1.hf.space/") |
|
salmmon_client = Client("fffiloni/SALMONN-7B-gradio") |
|
import cv2 |
|
from moviepy.editor import * |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import torch |
|
from transformers import pipeline |
|
|
|
zephyr_model = "HuggingFaceH4/zephyr-7b-beta" |
|
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
standard_sys = f""" |
|
You will be provided a list of visual details observed at regular intervals, along with an audio description. These pieces of information originate from a single video. The visual details are extracted from the video at fixed time intervals and represent consecutive frames. Typically, the video consists of a brief sequence showing one or more subjects... |
|
|
|
Please note that the following list of image descriptions (visual details) was obtained by extracting individual frames from a continuous video featuring one or more subjects. Depending on the case, all depicted individuals may correspond to the same person(s), with minor variations due to changes in lighting, angle, and facial expressions over time. Regardless, assume temporal continuity among the frames unless otherwise specified. |
|
|
|
Audio events are actually the entire scene description based only on the audio of the video. Your job is to integrate these multimodal inputs intelligently and provide a very short resume about what is happening in the origin video. Provide a succinct overview of what you understood. |
|
""" |
|
|
|
def trim_video(input_path, max_duration=10): |
|
if input_path is not None: |
|
video_clip = VideoFileClip(input_path) |
|
output_path = "video_cut_10.mp4" |
|
if video_clip.duration > max_duration: |
|
trimmed_clip = video_clip.subclip(0, max_duration) |
|
trimmed_clip.write_videofile(output_path, audio_codec='aac') |
|
return output_path |
|
else: |
|
return input_path |
|
else : |
|
return None |
|
|
|
def extract_frames(video_in, output_format='.jpg'): |
|
|
|
video_clip = VideoFileClip(video_in) |
|
if video_clip.duration <= 5: |
|
interval = 6 |
|
else : |
|
interval = 24 |
|
|
|
"""Extract frames from a video at a specified interval and store them in a list. |
|
|
|
Args: |
|
- video_in: string or path-like object pointing to the video file |
|
- interval: integer specifying how many frames apart to extract images (default: 5) |
|
- output_format: string indicating desired format for saved images (default: '.jpg') |
|
|
|
Returns: |
|
A list of strings containing paths to saved images. |
|
""" |
|
|
|
|
|
vidcap = cv2.VideoCapture(video_in) |
|
frames = [] |
|
count = 0 |
|
|
|
|
|
while True: |
|
success, image = vidcap.read() |
|
|
|
|
|
if success: |
|
|
|
|
|
|
|
if count % interval == 0: |
|
filename = f'frame_{count // interval}{output_format}' |
|
frames.append(filename) |
|
cv2.imwrite(filename, image) |
|
print(f'Saved {filename}') |
|
|
|
|
|
count += 1 |
|
|
|
|
|
else: |
|
break |
|
|
|
|
|
vidcap.release() |
|
print('Done extracting frames!') |
|
|
|
return frames |
|
|
|
''' |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
|
|
model_id = "vikhyatk/moondream2" |
|
revision = "2024-03-06" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, revision=revision |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) |
|
''' |
|
|
|
|
|
def process_image(image_in): |
|
|
|
|
|
result = moondream_client.predict( |
|
image_in, |
|
"Describe precisely the image in one sentence.", |
|
api_name="/answer_question" |
|
|
|
) |
|
print(result) |
|
return result |
|
''' |
|
image = Image.open(image_in) |
|
enc_image = model.encode_image(image) |
|
result = model.answer_question(enc_image, "Describe the image in one sentence.", tokenizer) |
|
print(result) |
|
return result |
|
''' |
|
|
|
def extract_audio(video_path): |
|
video_clip = VideoFileClip(video_path) |
|
|
|
if video_clip.audio is not None: |
|
audio_clip = video_clip.audio |
|
audio_clip.write_audiofile("output_audio.mp3") |
|
return "output_audio.mp3" |
|
else: |
|
print("The video does not have any audio.") |
|
return None |
|
|
|
def get_salmonn(audio_in): |
|
salmonn_prompt = "Please describe the audio" |
|
|
|
result = salmmon_client.predict( |
|
audio_in, |
|
salmonn_prompt, |
|
4, |
|
1, |
|
0.9, |
|
api_name="/gradio_answer" |
|
) |
|
print(result) |
|
return result |
|
|
|
@spaces.GPU() |
|
def llm_process(user_prompt): |
|
agent_maker_sys = standard_sys |
|
|
|
instruction = f""" |
|
<|system|> |
|
{agent_maker_sys}</s> |
|
<|user|> |
|
""" |
|
|
|
prompt = f"{instruction.strip()}\n{user_prompt}</s>" |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>' |
|
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL) |
|
|
|
print(f"SUGGESTED video description: {cleaned_text}") |
|
return cleaned_text.lstrip("\n") |
|
|
|
def infer(video_in): |
|
|
|
gr.Info("Extracting frames...") |
|
frame_files = extract_frames(video_in) |
|
|
|
|
|
gr.Info("Captioning frames ...") |
|
processed_texts = [] |
|
for frame_file in frame_files: |
|
text = process_image(frame_file) |
|
processed_texts.append(text) |
|
print(processed_texts) |
|
|
|
|
|
string_list = '\n'.join(processed_texts) |
|
|
|
|
|
extracted_audio = extract_audio(video_in) |
|
|
|
if extracted_audio is not None : |
|
print(extracted_audio) |
|
|
|
|
|
gr.Info("Getting audio description from extracted sound ...") |
|
audio_content_described = get_salmonn(extracted_audio) |
|
else : |
|
audio_content_described = "Video has no sound." |
|
|
|
|
|
formatted_captions = f""" |
|
### Visual events:\n{string_list}\n ### Audio events:\n{audio_content_described} |
|
""" |
|
print(formatted_captions) |
|
|
|
|
|
gr.Info("Try to provide a video understanding with provided elements ...") |
|
video_description_from_llm = llm_process(formatted_captions) |
|
|
|
return video_description_from_llm |
|
|
|
css = """ |
|
div#col-container{ |
|
margin: 0 auto; |
|
max-width: 1280px; |
|
} |
|
div#video-text textarea { |
|
font-size: 20px; |
|
line-height: 1.2em; |
|
font-weight: 600; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo : |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(""" |
|
<h2 style="text-align: center;">Soft Video Understanding</h2> |
|
<p style="text-align: center;"> |
|
An experiment to try to achieve what i call "soft video understanding" with open-source available models. <br /> |
|
We use moondream1 to caption extracted frames, salmonn to analyze extracted audio, then give visual and audio details to Zephyr which is instructed to resume what it understood.<br /> |
|
Instructions prompt is available for further discussion with the Community. <br /> |
|
Note that audio is crucial for better overall vision. Video longer than 10 seconds will be cut. |
|
</p> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
video_in = gr.Video(label="Video input") |
|
with gr.Accordion("System Instructions (for your curiosity)", open=False): |
|
system_instruction = gr.Markdown( |
|
value = standard_sys |
|
) |
|
gr.Examples( |
|
examples = ["examples/train.mp4", "examples/puppies.mp4", "examples/turtle.mp4"], |
|
inputs = [video_in] |
|
) |
|
with gr.Column(): |
|
video_cut = gr.Video(label="Video cut to 10 seconds", interactive=False) |
|
submit_btn = gr.Button("Submit") |
|
video_description = gr.Textbox(label="Video description", elem_id="video-text") |
|
|
|
video_in.change( |
|
fn = trim_video, |
|
inputs = [video_in], |
|
outputs = [video_cut], |
|
queue = False |
|
) |
|
submit_btn.click( |
|
fn = infer, |
|
inputs = [video_cut], |
|
outputs = [video_description] |
|
) |
|
demo.queue(max_size=10).launch(show_error=True) |