Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
|
4 |
+
# 1. extract and store 1 image every 5 images from video input
|
5 |
+
# 2. extract audio
|
6 |
+
# 3. for each image from extracted_images, get caption from caption model and concatenate into list
|
7 |
+
# 4. for audio, ask audio questioning model to describe sound/scene
|
8 |
+
# 5. give all to LLM, and ask it to resume, according to image caption list combined to audio caption
|
9 |
+
|
10 |
+
def extract_image()
|
11 |
+
|
12 |
+
def get_moondream()
|
13 |
+
|
14 |
+
def get_salmonn()
|
15 |
+
|
16 |
+
def llm_process()
|
17 |
+
|
18 |
+
def infer(video_in):
|
19 |
+
|
20 |
+
return video_description
|
21 |
+
|
22 |
+
with gr.Blocks() as demo :
|
23 |
+
with gr.Column(elem_id="col-container"):
|
24 |
+
gr.HTML("""
|
25 |
+
<h2 style="text-align: center;">Video description</h2>
|
26 |
+
""")
|
27 |
+
video_in = gr.Video(label="Video input")
|
28 |
+
submit_btn = gr.Button("SUbmit")
|
29 |
+
video_description = gr.Textbox(label="Video description")
|
30 |
+
submit_btn.click(
|
31 |
+
fn = infer,
|
32 |
+
inputs = [video_in],
|
33 |
+
outputs = [video_description]
|
34 |
+
)
|
35 |
+
demo.queue().launch()
|