Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
"""
|
4 |
-
Audio processing tools to convert between spectrogram images and waveforms.
|
5 |
-
"""
|
6 |
-
import io
|
7 |
-
import typing as T
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
from PIL import Image
|
11 |
-
import pydub
|
12 |
-
from scipy.io import wavfile
|
13 |
-
import torch
|
14 |
-
import torchaudio
|
15 |
|
|
|
16 |
from diffusers import StableDiffusionPipeline
|
17 |
|
18 |
model_id = "riffusion/riffusion-model-v1"
|
19 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
20 |
pipe = pipe.to("cuda")
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
sample_rate = 44100 # [Hz]
|
36 |
-
clip_duration_ms = 5000 # [ms]
|
37 |
-
|
38 |
-
bins_per_image = 512
|
39 |
-
n_mels = 512
|
40 |
-
|
41 |
-
# FFT parameters
|
42 |
-
window_duration_ms = 100 # [ms]
|
43 |
-
padded_duration_ms = 400 # [ms]
|
44 |
-
step_size_ms = 10 # [ms]
|
45 |
-
|
46 |
-
# Derived parameters
|
47 |
-
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate
|
48 |
-
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
|
49 |
-
hop_length = int(step_size_ms / 1000.0 * sample_rate)
|
50 |
-
win_length = int(window_duration_ms / 1000.0 * sample_rate)
|
51 |
-
|
52 |
-
samples = waveform_from_spectrogram(
|
53 |
-
Sxx=Sxx,
|
54 |
-
n_fft=n_fft,
|
55 |
-
hop_length=hop_length,
|
56 |
-
win_length=win_length,
|
57 |
-
num_samples=num_samples,
|
58 |
-
sample_rate=sample_rate,
|
59 |
-
mel_scale=True,
|
60 |
-
n_mels=n_mels,
|
61 |
-
max_mel_iters=200,
|
62 |
-
num_griffin_lim_iters=32,
|
63 |
-
)
|
64 |
-
|
65 |
-
wav_bytes = io.BytesIO()
|
66 |
-
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16))
|
67 |
-
wav_bytes.seek(0)
|
68 |
-
|
69 |
-
duration_s = float(len(samples)) / sample_rate
|
70 |
-
|
71 |
-
return wav_bytes
|
72 |
-
|
73 |
-
def spectrogram_from_image(
|
74 |
-
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25
|
75 |
-
) -> np.ndarray:
|
76 |
-
"""
|
77 |
-
Compute a spectrogram magnitude array from a spectrogram image.
|
78 |
-
TODO(hayk): Add image_from_spectrogram and call this out as the reverse.
|
79 |
-
"""
|
80 |
-
# Convert to a numpy array of floats
|
81 |
-
data = np.array(image).astype(np.float32)
|
82 |
-
|
83 |
-
# Flip Y take a single channel
|
84 |
-
data = data[::-1, :, 0]
|
85 |
-
|
86 |
-
# Invert
|
87 |
-
data = 255 - data
|
88 |
-
|
89 |
-
# Rescale to max volume
|
90 |
-
data = data * max_volume / 255
|
91 |
-
|
92 |
-
# Reverse the power curve
|
93 |
-
data = np.power(data, 1 / power_for_image)
|
94 |
-
|
95 |
-
return data
|
96 |
-
|
97 |
-
def waveform_from_spectrogram(
|
98 |
-
Sxx: np.ndarray,
|
99 |
-
n_fft: int,
|
100 |
-
hop_length: int,
|
101 |
-
win_length: int,
|
102 |
-
num_samples: int,
|
103 |
-
sample_rate: int,
|
104 |
-
mel_scale: bool = True,
|
105 |
-
n_mels: int = 512,
|
106 |
-
max_mel_iters: int = 200,
|
107 |
-
num_griffin_lim_iters: int = 32,
|
108 |
-
device: str = "cuda:0",
|
109 |
-
) -> np.ndarray:
|
110 |
-
"""
|
111 |
-
Reconstruct a waveform from a spectrogram.
|
112 |
-
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm
|
113 |
-
to approximate the phase.
|
114 |
-
"""
|
115 |
-
Sxx_torch = torch.from_numpy(Sxx).to(device)
|
116 |
-
|
117 |
-
# TODO(hayk): Make this a class that caches the two things
|
118 |
-
|
119 |
-
if mel_scale:
|
120 |
-
mel_inv_scaler = torchaudio.transforms.InverseMelScale(
|
121 |
-
n_mels=n_mels,
|
122 |
-
sample_rate=sample_rate,
|
123 |
-
f_min=0,
|
124 |
-
f_max=10000,
|
125 |
-
n_stft=n_fft // 2 + 1,
|
126 |
-
norm=None,
|
127 |
-
mel_scale="htk",
|
128 |
-
max_iter=max_mel_iters,
|
129 |
-
).to(device)
|
130 |
-
|
131 |
-
Sxx_torch = mel_inv_scaler(Sxx_torch)
|
132 |
-
|
133 |
-
griffin_lim = torchaudio.transforms.GriffinLim(
|
134 |
-
n_fft=n_fft,
|
135 |
-
win_length=win_length,
|
136 |
-
hop_length=hop_length,
|
137 |
-
power=1.0,
|
138 |
-
n_iter=num_griffin_lim_iters,
|
139 |
-
).to(device)
|
140 |
-
|
141 |
-
waveform = griffin_lim(Sxx_torch).cpu().numpy()
|
142 |
-
|
143 |
-
return waveform
|
144 |
-
|
145 |
-
|
146 |
-
gr.Interface(fn=get_spectro, inputs=[gr.Textbox()], outputs=[gr.Image()]).launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from spectro import wav_bytes_from_spectrogram_image
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
|
7 |
model_id = "riffusion/riffusion-model-v1"
|
8 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
9 |
pipe = pipe.to("cuda")
|
10 |
|
11 |
+
def predict(prompt):
|
12 |
+
spec = pipe(prompt).images[0]
|
13 |
+
wav = wav_bytes_from_spectrogram_image(spec)
|
14 |
+
with open("output.wav", "wb") as f:
|
15 |
+
f.write(wav[0].getbuffer())
|
16 |
+
return 'output.wav'
|
17 |
+
|
18 |
+
gr.Interface(
|
19 |
+
predict,
|
20 |
+
inputs="text",
|
21 |
+
outputs=gr.outputs.Audio(type='filepath'),
|
22 |
+
title="Riffusion",
|
23 |
+
).launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|