Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_app.py
Browse files- gradio_app.py +41 -40
gradio_app.py
CHANGED
@@ -2,12 +2,6 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
5 |
-
|
6 |
-
# import argparse
|
7 |
-
|
8 |
-
snapshot_download(repo_id="fffiloni/svd_keyframe_interpolation", local_dir="checkpoints")
|
9 |
-
checkpoint_dir = "checkpoints/svd_reverse_motion_with_attnflip"
|
10 |
-
|
11 |
from diffusers.utils import load_image, export_to_video
|
12 |
from diffusers import UNetSpatioTemporalConditionModel
|
13 |
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline
|
@@ -16,8 +10,16 @@ from attn_ctrl.attention_control import (AttentionStore,
|
|
16 |
register_temporal_self_attention_control,
|
17 |
register_temporal_self_attention_flip_control,
|
18 |
)
|
|
|
19 |
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
pretrained_model_name_or_path = "stabilityai/stable-video-diffusion-img2vid-xt"
|
22 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
23 |
|
@@ -29,14 +31,14 @@ pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained(
|
|
29 |
)
|
30 |
ref_unet = pipe.ori_unet
|
31 |
|
|
|
32 |
state_dict = pipe.unet.state_dict()
|
33 |
-
# computing delta w
|
34 |
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
35 |
checkpoint_dir,
|
36 |
subfolder="unet",
|
37 |
torch_dtype=torch.float16,
|
38 |
)
|
39 |
-
assert finetuned_unet.config.num_frames==14
|
40 |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
41 |
"stabilityai/stable-video-diffusion-img2vid",
|
42 |
subfolder="unet",
|
@@ -52,33 +54,33 @@ for name, param in finetuned_state_dict.items():
|
|
52 |
state_dict[name] = state_dict[name] + delta_w
|
53 |
pipe.unet.load_state_dict(state_dict)
|
54 |
|
55 |
-
controller_ref= AttentionStore()
|
56 |
register_temporal_self_attention_control(ref_unet, controller_ref)
|
57 |
|
58 |
controller = AttentionStore()
|
59 |
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref)
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
def check_outputs_folder(folder_path):
|
65 |
-
# Check if the folder exists
|
66 |
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
67 |
-
# Delete all contents inside the folder
|
68 |
for filename in os.listdir(folder_path):
|
69 |
file_path = os.path.join(folder_path, filename)
|
70 |
try:
|
71 |
if os.path.isfile(file_path) or os.path.islink(file_path):
|
72 |
-
os.unlink(file_path)
|
73 |
elif os.path.isdir(file_path):
|
74 |
-
shutil.rmtree(file_path)
|
75 |
except Exception as e:
|
76 |
print(f'Failed to delete {file_path}. Reason: {e}')
|
77 |
else:
|
78 |
print(f'The folder {folder_path} does not exist.')
|
79 |
|
|
|
80 |
def infer(frame1_path, frame2_path):
|
81 |
-
|
82 |
seed = 42
|
83 |
num_inference_steps = 10
|
84 |
noise_injection_steps = 0
|
@@ -88,7 +90,6 @@ def infer(frame1_path, frame2_path):
|
|
88 |
generator = torch.Generator(device)
|
89 |
if seed is not None:
|
90 |
generator = generator.manual_seed(seed)
|
91 |
-
|
92 |
|
93 |
frame1 = load_image(frame1_path)
|
94 |
frame1 = frame1.resize((512, 288))
|
@@ -96,34 +97,32 @@ def infer(frame1_path, frame2_path):
|
|
96 |
frame2 = load_image(frame2_path)
|
97 |
frame2 = frame2.resize((512, 288))
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
out_dir = "result"
|
112 |
|
|
|
113 |
check_outputs_folder(out_dir)
|
114 |
os.makedirs(out_dir, exist_ok=True)
|
115 |
out_path = "result/video_result.gif"
|
116 |
|
117 |
-
'''
|
118 |
-
if out_path.endswith('.gif'):
|
119 |
-
frames[0].save(out_path, save_all=True, append_images=frames[1:], duration=142, loop=0)
|
120 |
-
else:
|
121 |
-
export_to_video(frames, out_path, fps=7)
|
122 |
-
'''
|
123 |
return "done"
|
124 |
|
125 |
-
|
|
|
|
|
|
|
126 |
|
|
|
127 |
with gr.Column():
|
128 |
gr.Markdown("# Keyframe Interpolation with Stable Video Diffusion")
|
129 |
with gr.Row():
|
@@ -135,10 +134,12 @@ with gr.Blocks() as demo:
|
|
135 |
output = gr.Textbox()
|
136 |
|
137 |
submit_btn.click(
|
138 |
-
fn
|
139 |
-
inputs
|
140 |
-
outputs
|
141 |
-
show_api
|
142 |
)
|
143 |
|
144 |
-
demo.
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from diffusers.utils import load_image, export_to_video
|
6 |
from diffusers import UNetSpatioTemporalConditionModel
|
7 |
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline
|
|
|
10 |
register_temporal_self_attention_control,
|
11 |
register_temporal_self_attention_flip_control,
|
12 |
)
|
13 |
+
from torch.cuda.amp import autocast
|
14 |
|
15 |
+
# Set up device
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
+
# Download checkpoint
|
19 |
+
snapshot_download(repo_id="fffiloni/svd_keyframe_interpolation", local_dir="checkpoints")
|
20 |
+
checkpoint_dir = "checkpoints/svd_reverse_motion_with_attnflip"
|
21 |
+
|
22 |
+
# Initialize pipeline
|
23 |
pretrained_model_name_or_path = "stabilityai/stable-video-diffusion-img2vid-xt"
|
24 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
25 |
|
|
|
31 |
)
|
32 |
ref_unet = pipe.ori_unet
|
33 |
|
34 |
+
# Compute delta w
|
35 |
state_dict = pipe.unet.state_dict()
|
|
|
36 |
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
37 |
checkpoint_dir,
|
38 |
subfolder="unet",
|
39 |
torch_dtype=torch.float16,
|
40 |
)
|
41 |
+
assert finetuned_unet.config.num_frames == 14
|
42 |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
43 |
"stabilityai/stable-video-diffusion-img2vid",
|
44 |
subfolder="unet",
|
|
|
54 |
state_dict[name] = state_dict[name] + delta_w
|
55 |
pipe.unet.load_state_dict(state_dict)
|
56 |
|
57 |
+
controller_ref = AttentionStore()
|
58 |
register_temporal_self_attention_control(ref_unet, controller_ref)
|
59 |
|
60 |
controller = AttentionStore()
|
61 |
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref)
|
62 |
|
63 |
+
# Custom CUDA memory management function
|
64 |
+
def cuda_memory_cleanup():
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
torch.cuda.ipc_collect()
|
67 |
|
68 |
def check_outputs_folder(folder_path):
|
|
|
69 |
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
|
|
70 |
for filename in os.listdir(folder_path):
|
71 |
file_path = os.path.join(folder_path, filename)
|
72 |
try:
|
73 |
if os.path.isfile(file_path) or os.path.islink(file_path):
|
74 |
+
os.unlink(file_path)
|
75 |
elif os.path.isdir(file_path):
|
76 |
+
shutil.rmtree(file_path)
|
77 |
except Exception as e:
|
78 |
print(f'Failed to delete {file_path}. Reason: {e}')
|
79 |
else:
|
80 |
print(f'The folder {folder_path} does not exist.')
|
81 |
|
82 |
+
@torch.no_grad()
|
83 |
def infer(frame1_path, frame2_path):
|
|
|
84 |
seed = 42
|
85 |
num_inference_steps = 10
|
86 |
noise_injection_steps = 0
|
|
|
90 |
generator = torch.Generator(device)
|
91 |
if seed is not None:
|
92 |
generator = generator.manual_seed(seed)
|
|
|
93 |
|
94 |
frame1 = load_image(frame1_path)
|
95 |
frame1 = frame1.resize((512, 288))
|
|
|
97 |
frame2 = load_image(frame2_path)
|
98 |
frame2 = frame2.resize((512, 288))
|
99 |
|
100 |
+
cuda_memory_cleanup()
|
101 |
|
102 |
+
with autocast():
|
103 |
+
frames = pipe(image1=frame1, image2=frame2,
|
104 |
+
num_inference_steps=num_inference_steps,
|
105 |
+
generator=generator,
|
106 |
+
weighted_average=weighted_average,
|
107 |
+
noise_injection_steps=noise_injection_steps,
|
108 |
+
noise_injection_ratio=noise_injection_ratio,
|
109 |
+
).frames[0]
|
110 |
|
111 |
+
frames = [frame.cpu() for frame in frames]
|
|
|
|
|
112 |
|
113 |
+
out_dir = "result"
|
114 |
check_outputs_folder(out_dir)
|
115 |
os.makedirs(out_dir, exist_ok=True)
|
116 |
out_path = "result/video_result.gif"
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
return "done"
|
119 |
|
120 |
+
@torch.no_grad()
|
121 |
+
def load_model():
|
122 |
+
global pipe
|
123 |
+
pipe = pipe.to(device)
|
124 |
|
125 |
+
with gr.Blocks() as demo:
|
126 |
with gr.Column():
|
127 |
gr.Markdown("# Keyframe Interpolation with Stable Video Diffusion")
|
128 |
with gr.Row():
|
|
|
134 |
output = gr.Textbox()
|
135 |
|
136 |
submit_btn.click(
|
137 |
+
fn=infer,
|
138 |
+
inputs=[image_input1, image_input2],
|
139 |
+
outputs=[output],
|
140 |
+
show_api=False
|
141 |
)
|
142 |
|
143 |
+
demo.load(load_model)
|
144 |
+
|
145 |
+
demo.queue(max_size=1).launch(show_api=False, show_error=True)
|