fffiloni commited on
Commit
f479bfc
·
verified ·
1 Parent(s): 7f9b687

Update gradio_app.py

Browse files
Files changed (1) hide show
  1. gradio_app.py +34 -41
gradio_app.py CHANGED
@@ -10,11 +10,7 @@ from attn_ctrl.attention_control import (AttentionStore,
10
  register_temporal_self_attention_control,
11
  register_temporal_self_attention_flip_control,
12
  )
13
- from torch.amp import autocast
14
- import gc
15
-
16
- # Set PYTORCH_CUDA_ALLOC_CONF
17
- os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
18
 
19
  # Set up device
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -32,7 +28,7 @@ pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained(
32
  scheduler=noise_scheduler,
33
  variant="fp16",
34
  torch_dtype=torch.float16,
35
- ).to(device)
36
  ref_unet = pipe.ori_unet
37
 
38
  # Compute delta w
@@ -41,14 +37,14 @@ finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
41
  checkpoint_dir,
42
  subfolder="unet",
43
  torch_dtype=torch.float16,
44
- ).to(device)
45
  assert finetuned_unet.config.num_frames == 14
46
  ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
47
  "stabilityai/stable-video-diffusion-img2vid",
48
  subfolder="unet",
49
  variant='fp16',
50
  torch_dtype=torch.float16,
51
- ).to(device)
52
 
53
  finetuned_state_dict = finetuned_unet.state_dict()
54
  ori_state_dict = ori_unet.state_dict()
@@ -68,7 +64,6 @@ register_temporal_self_attention_flip_control(pipe.unet, controller, controller_
68
  def cuda_memory_cleanup():
69
  torch.cuda.empty_cache()
70
  torch.cuda.ipc_collect()
71
- gc.collect()
72
 
73
  def check_outputs_folder(folder_path):
74
  if os.path.exists(folder_path) and os.path.isdir(folder_path):
@@ -87,51 +82,47 @@ def check_outputs_folder(folder_path):
87
  @torch.no_grad()
88
  def infer(frame1_path, frame2_path):
89
  seed = 42
90
- num_inference_steps = 5 # Reduced from 10
91
  noise_injection_steps = 0
92
  noise_injection_ratio = 0.5
93
  weighted_average = False
 
94
 
95
  generator = torch.Generator(device)
96
  if seed is not None:
97
  generator = generator.manual_seed(seed)
98
 
99
  frame1 = load_image(frame1_path)
100
- frame1 = frame1.resize((256, 144)) # Reduced from (512, 288)
101
 
102
  frame2 = load_image(frame2_path)
103
- frame2 = frame2.resize((256, 144)) # Reduced from (512, 288)
104
 
105
- # Clear CUDA cache
106
  cuda_memory_cleanup()
107
 
108
- try:
109
- with autocast():
110
- frames = pipe(
111
- image1=frame1,
112
- image2=frame2,
113
- num_inference_steps=num_inference_steps,
114
- generator=generator,
115
- weighted_average=weighted_average,
116
- noise_injection_steps=noise_injection_steps,
117
- noise_injection_ratio=noise_injection_ratio,
118
- ).frames[0]
119
-
120
- frames = [frame.cpu() for frame in frames]
121
-
122
- out_dir = "result"
123
- check_outputs_folder(out_dir)
124
- os.makedirs(out_dir, exist_ok=True)
125
- out_path = "result/video_result.gif"
126
-
127
- return "done"
128
- except RuntimeError as e:
129
- if "CUDA out of memory" in str(e):
130
- return "Error: CUDA out of memory. Try reducing the image size or using fewer inference steps."
131
- else:
132
- return f"An error occurred: {str(e)}"
133
- finally:
134
- cuda_memory_cleanup()
135
 
136
  with gr.Blocks() as demo:
137
  with gr.Column():
@@ -151,4 +142,6 @@ with gr.Blocks() as demo:
151
  show_api=False
152
  )
153
 
154
- demo.queue(max_size=1).launch(show_api=False, show_error=True, share=True)
 
 
 
10
  register_temporal_self_attention_control,
11
  register_temporal_self_attention_flip_control,
12
  )
13
+ from torch.cuda.amp import autocast
 
 
 
 
14
 
15
  # Set up device
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
28
  scheduler=noise_scheduler,
29
  variant="fp16",
30
  torch_dtype=torch.float16,
31
+ )
32
  ref_unet = pipe.ori_unet
33
 
34
  # Compute delta w
 
37
  checkpoint_dir,
38
  subfolder="unet",
39
  torch_dtype=torch.float16,
40
+ )
41
  assert finetuned_unet.config.num_frames == 14
42
  ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
43
  "stabilityai/stable-video-diffusion-img2vid",
44
  subfolder="unet",
45
  variant='fp16',
46
  torch_dtype=torch.float16,
47
+ )
48
 
49
  finetuned_state_dict = finetuned_unet.state_dict()
50
  ori_state_dict = ori_unet.state_dict()
 
64
  def cuda_memory_cleanup():
65
  torch.cuda.empty_cache()
66
  torch.cuda.ipc_collect()
 
67
 
68
  def check_outputs_folder(folder_path):
69
  if os.path.exists(folder_path) and os.path.isdir(folder_path):
 
82
  @torch.no_grad()
83
  def infer(frame1_path, frame2_path):
84
  seed = 42
85
+ num_inference_steps = 10
86
  noise_injection_steps = 0
87
  noise_injection_ratio = 0.5
88
  weighted_average = False
89
+ decode_chunk_size = 8
90
 
91
  generator = torch.Generator(device)
92
  if seed is not None:
93
  generator = generator.manual_seed(seed)
94
 
95
  frame1 = load_image(frame1_path)
96
+ frame1 = frame1.resize((512, 288))
97
 
98
  frame2 = load_image(frame2_path)
99
+ frame2 = frame2.resize((512, 288))
100
 
 
101
  cuda_memory_cleanup()
102
 
103
+ with autocast():
104
+ frames = pipe(image1=frame1, image2=frame2,
105
+ num_inference_steps=num_inference_steps,
106
+ generator=generator,
107
+ weighted_average=weighted_average,
108
+ noise_injection_steps=noise_injection_steps,
109
+ noise_injection_ratio=noise_injection_ratio,
110
+ decode_chunk_size=decode_chunk_size
111
+ ).frames[0]
112
+
113
+ frames = [frame.cpu() for frame in frames]
114
+
115
+ out_dir = "result"
116
+ check_outputs_folder(out_dir)
117
+ os.makedirs(out_dir, exist_ok=True)
118
+ out_path = "result/video_result.gif"
119
+
120
+ return "done"
121
+
122
+ @torch.no_grad()
123
+ def load_model():
124
+ global pipe
125
+ pipe = pipe.to(device)
 
 
 
 
126
 
127
  with gr.Blocks() as demo:
128
  with gr.Column():
 
142
  show_api=False
143
  )
144
 
145
+ demo.load(load_model)
146
+
147
+ demo.queue(max_size=1).launch(show_api=False, show_error=True)