Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_app.py
Browse files- gradio_app.py +34 -41
gradio_app.py
CHANGED
@@ -10,11 +10,7 @@ from attn_ctrl.attention_control import (AttentionStore,
|
|
10 |
register_temporal_self_attention_control,
|
11 |
register_temporal_self_attention_flip_control,
|
12 |
)
|
13 |
-
from torch.amp import autocast
|
14 |
-
import gc
|
15 |
-
|
16 |
-
# Set PYTORCH_CUDA_ALLOC_CONF
|
17 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
18 |
|
19 |
# Set up device
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -32,7 +28,7 @@ pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained(
|
|
32 |
scheduler=noise_scheduler,
|
33 |
variant="fp16",
|
34 |
torch_dtype=torch.float16,
|
35 |
-
)
|
36 |
ref_unet = pipe.ori_unet
|
37 |
|
38 |
# Compute delta w
|
@@ -41,14 +37,14 @@ finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
|
41 |
checkpoint_dir,
|
42 |
subfolder="unet",
|
43 |
torch_dtype=torch.float16,
|
44 |
-
)
|
45 |
assert finetuned_unet.config.num_frames == 14
|
46 |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
47 |
"stabilityai/stable-video-diffusion-img2vid",
|
48 |
subfolder="unet",
|
49 |
variant='fp16',
|
50 |
torch_dtype=torch.float16,
|
51 |
-
)
|
52 |
|
53 |
finetuned_state_dict = finetuned_unet.state_dict()
|
54 |
ori_state_dict = ori_unet.state_dict()
|
@@ -68,7 +64,6 @@ register_temporal_self_attention_flip_control(pipe.unet, controller, controller_
|
|
68 |
def cuda_memory_cleanup():
|
69 |
torch.cuda.empty_cache()
|
70 |
torch.cuda.ipc_collect()
|
71 |
-
gc.collect()
|
72 |
|
73 |
def check_outputs_folder(folder_path):
|
74 |
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
@@ -87,51 +82,47 @@ def check_outputs_folder(folder_path):
|
|
87 |
@torch.no_grad()
|
88 |
def infer(frame1_path, frame2_path):
|
89 |
seed = 42
|
90 |
-
num_inference_steps =
|
91 |
noise_injection_steps = 0
|
92 |
noise_injection_ratio = 0.5
|
93 |
weighted_average = False
|
|
|
94 |
|
95 |
generator = torch.Generator(device)
|
96 |
if seed is not None:
|
97 |
generator = generator.manual_seed(seed)
|
98 |
|
99 |
frame1 = load_image(frame1_path)
|
100 |
-
frame1 = frame1.resize((
|
101 |
|
102 |
frame2 = load_image(frame2_path)
|
103 |
-
frame2 = frame2.resize((
|
104 |
|
105 |
-
# Clear CUDA cache
|
106 |
cuda_memory_cleanup()
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
else:
|
132 |
-
return f"An error occurred: {str(e)}"
|
133 |
-
finally:
|
134 |
-
cuda_memory_cleanup()
|
135 |
|
136 |
with gr.Blocks() as demo:
|
137 |
with gr.Column():
|
@@ -151,4 +142,6 @@ with gr.Blocks() as demo:
|
|
151 |
show_api=False
|
152 |
)
|
153 |
|
154 |
-
demo.
|
|
|
|
|
|
10 |
register_temporal_self_attention_control,
|
11 |
register_temporal_self_attention_flip_control,
|
12 |
)
|
13 |
+
from torch.cuda.amp import autocast
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Set up device
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
28 |
scheduler=noise_scheduler,
|
29 |
variant="fp16",
|
30 |
torch_dtype=torch.float16,
|
31 |
+
)
|
32 |
ref_unet = pipe.ori_unet
|
33 |
|
34 |
# Compute delta w
|
|
|
37 |
checkpoint_dir,
|
38 |
subfolder="unet",
|
39 |
torch_dtype=torch.float16,
|
40 |
+
)
|
41 |
assert finetuned_unet.config.num_frames == 14
|
42 |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
43 |
"stabilityai/stable-video-diffusion-img2vid",
|
44 |
subfolder="unet",
|
45 |
variant='fp16',
|
46 |
torch_dtype=torch.float16,
|
47 |
+
)
|
48 |
|
49 |
finetuned_state_dict = finetuned_unet.state_dict()
|
50 |
ori_state_dict = ori_unet.state_dict()
|
|
|
64 |
def cuda_memory_cleanup():
|
65 |
torch.cuda.empty_cache()
|
66 |
torch.cuda.ipc_collect()
|
|
|
67 |
|
68 |
def check_outputs_folder(folder_path):
|
69 |
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
|
|
82 |
@torch.no_grad()
|
83 |
def infer(frame1_path, frame2_path):
|
84 |
seed = 42
|
85 |
+
num_inference_steps = 10
|
86 |
noise_injection_steps = 0
|
87 |
noise_injection_ratio = 0.5
|
88 |
weighted_average = False
|
89 |
+
decode_chunk_size = 8
|
90 |
|
91 |
generator = torch.Generator(device)
|
92 |
if seed is not None:
|
93 |
generator = generator.manual_seed(seed)
|
94 |
|
95 |
frame1 = load_image(frame1_path)
|
96 |
+
frame1 = frame1.resize((512, 288))
|
97 |
|
98 |
frame2 = load_image(frame2_path)
|
99 |
+
frame2 = frame2.resize((512, 288))
|
100 |
|
|
|
101 |
cuda_memory_cleanup()
|
102 |
|
103 |
+
with autocast():
|
104 |
+
frames = pipe(image1=frame1, image2=frame2,
|
105 |
+
num_inference_steps=num_inference_steps,
|
106 |
+
generator=generator,
|
107 |
+
weighted_average=weighted_average,
|
108 |
+
noise_injection_steps=noise_injection_steps,
|
109 |
+
noise_injection_ratio=noise_injection_ratio,
|
110 |
+
decode_chunk_size=decode_chunk_size
|
111 |
+
).frames[0]
|
112 |
+
|
113 |
+
frames = [frame.cpu() for frame in frames]
|
114 |
+
|
115 |
+
out_dir = "result"
|
116 |
+
check_outputs_folder(out_dir)
|
117 |
+
os.makedirs(out_dir, exist_ok=True)
|
118 |
+
out_path = "result/video_result.gif"
|
119 |
+
|
120 |
+
return "done"
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def load_model():
|
124 |
+
global pipe
|
125 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
126 |
|
127 |
with gr.Blocks() as demo:
|
128 |
with gr.Column():
|
|
|
142 |
show_api=False
|
143 |
)
|
144 |
|
145 |
+
demo.load(load_model)
|
146 |
+
|
147 |
+
demo.queue(max_size=1).launch(show_api=False, show_error=True)
|