# Original ControlNet paper: # "In the training process, we randomly replace 50% text prompts ct with empty strings. # This approach increases ControlNet’s ability to directly recognize semantics # in the input conditioning images (e.g., edges, poses, depth, etc.) as a replacement for the prompt." # https://civitai.com/articles/2078/play-in-control-controlnet-training-setup-guide export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0" export REPO="ByteDance/SDXL-Lightning" export INFERENCE_STEP=8 export CKPT="sdxl_lightning_8step_unet.safetensors" # caution!!! ckpt's "N"step must match with inference_step export OUTPUT_DIR="test" export PROJECT_NAME="train_sdxl_light_controlnet" export DATASET="nickpai/coco2017-colorization" export REVISION="custom-caption" # option: main/caption-free/custom-caption export VAL_IMG_NAME="'./000000295478.jpg' './000000122962.jpg' './000000000285.jpg' './000000007991.jpg' './000000018837.jpg' './000000000724.jpg'" export VAL_PROMPT="'Woman walking a small dog behind her.' 'A group of children sitting at a long table eating pizza.' 'A close up picture of a bear face.' 'A plate on a table is filled with carrots and beans.' 'A large truck on a city street with two works sitting on top and one worker climbing in through door.' 'An upside down stop sign by the road.'" # export VAL_PROMPT="'Colorize this image as if it was taken with a color camera' 'Colorize this image' 'Add colors to this image' 'Make this image colorful' 'Colorize this grayscale image' 'Add colors to this image'" accelerate launch train_controlnet_sdxl_light.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --tracker_project_name=$PROJECT_NAME \ --seed=123123 \ --dataset_name=$DATASET \ --dataset_revision=$REVISION \ --image_column="file_name" \ --conditioning_image_column="file_name" \ --caption_column="captions" \ --max_train_samples=100000 \ --num_validation_images=1 \ --resolution=512 \ --num_train_epochs=5 \ --dataloader_num_workers=8 \ --learning_rate=1e-5 \ --train_batch_size=2 \ --gradient_accumulation_steps=8 \ --proportion_empty_prompts=0 \ --validation_steps=500 \ --checkpointing_steps=2500 \ --mixed_precision="fp16" \ --gradient_checkpointing \ --use_8bit_adam \ --repo=$REPO \ --ckpt=$CKPT \ --num_inference_steps=$INFERENCE_STEP \ --enable_xformers_memory_efficient_attention # --validation_image './000000295478.jpg' './000000122962.jpg' './000000000285.jpg' './000000007991.jpg' './000000018837.jpg' './000000000724.jpg' \ # --validation_prompt 'Woman walking a small dog behind her.' 'A group of children sitting at a long table eating pizza.' 'A close up picture of a bear face.' 'A plate on a table is filled with carrots and beans.' 'A large truck on a city street with two works sitting on top and one worker climbing in through door.' 'An upside down stop sign by the road.' \