Spaces:
Running
on
A10G
Running
on
A10G
File size: 21,555 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# pylint: disable=E1120
"""
This module contains the implementation of mutual self-attention,
which is a type of attention mechanism used in deep learning models.
The module includes several classes and functions related to attention mechanisms,
such as BasicTransformerBlock and TemporalBasicTransformerBlock.
The main purpose of this module is to provide a comprehensive attention mechanism for various tasks in deep learning,
such as image and video processing, natural language processing, and so on.
"""
from typing import Any, Dict, Optional
import torch
from einops import rearrange
from .attention import BasicTransformerBlock, TemporalBasicTransformerBlock
def torch_dfs(model: torch.nn.Module):
"""
Perform a depth-first search (DFS) traversal on a PyTorch model's neural network architecture.
This function recursively traverses all the children modules of a given PyTorch model and returns a list
containing all the modules in the model's architecture. The DFS approach starts with the input model and
explores its children modules depth-wise before backtracking and exploring other branches.
Args:
model (torch.nn.Module): The root module of the neural network to traverse.
Returns:
list: A list of all the modules in the model's architecture.
"""
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
class ReferenceAttentionControl:
"""
This class is used to control the reference attention mechanism in a neural network model.
It is responsible for managing the guidance and fusion blocks, and modifying the self-attention
and group normalization mechanisms. The class also provides methods for registering reference hooks
and updating/clearing the internal state of the attention control object.
Attributes:
unet: The UNet model associated with this attention control object.
mode: The operating mode of the attention control object, either 'write' or 'read'.
do_classifier_free_guidance: Whether to use classifier-free guidance in the attention mechanism.
attention_auto_machine_weight: The weight assigned to the attention auto-machine.
gn_auto_machine_weight: The weight assigned to the group normalization auto-machine.
style_fidelity: The style fidelity parameter for the attention mechanism.
reference_attn: Whether to use reference attention in the model.
reference_adain: Whether to use reference AdaIN in the model.
fusion_blocks: The type of fusion blocks to use in the model ('midup', 'late', or 'nofusion').
batch_size: The batch size used for processing video frames.
Methods:
register_reference_hooks: Registers the reference hooks for the attention control object.
hacked_basic_transformer_inner_forward: The modified inner forward method for the basic transformer block.
update: Updates the internal state of the attention control object using the provided writer and dtype.
clear: Clears the internal state of the attention control object.
"""
def __init__(
self,
unet,
mode="write",
do_classifier_free_guidance=False,
attention_auto_machine_weight=float("inf"),
gn_auto_machine_weight=1.0,
style_fidelity=1.0,
reference_attn=True,
reference_adain=False,
fusion_blocks="midup",
batch_size=1,
) -> None:
"""
Initializes the ReferenceAttentionControl class.
Args:
unet (torch.nn.Module): The UNet model.
mode (str, optional): The mode of operation. Defaults to "write".
do_classifier_free_guidance (bool, optional): Whether to do classifier-free guidance. Defaults to False.
attention_auto_machine_weight (float, optional): The weight for attention auto-machine. Defaults to infinity.
gn_auto_machine_weight (float, optional): The weight for group-norm auto-machine. Defaults to 1.0.
style_fidelity (float, optional): The style fidelity. Defaults to 1.0.
reference_attn (bool, optional): Whether to use reference attention. Defaults to True.
reference_adain (bool, optional): Whether to use reference AdaIN. Defaults to False.
fusion_blocks (str, optional): The fusion blocks to use. Defaults to "midup".
batch_size (int, optional): The batch size. Defaults to 1.
Raises:
ValueError: If the mode is not recognized.
ValueError: If the fusion blocks are not recognized.
"""
# 10. Modify self attention and group norm
self.unet = unet
assert mode in ["read", "write"]
assert fusion_blocks in ["midup", "full"]
self.reference_attn = reference_attn
self.reference_adain = reference_adain
self.fusion_blocks = fusion_blocks
self.register_reference_hooks(
mode,
do_classifier_free_guidance,
attention_auto_machine_weight,
gn_auto_machine_weight,
style_fidelity,
reference_attn,
reference_adain,
fusion_blocks,
batch_size=batch_size,
)
def register_reference_hooks(
self,
mode,
do_classifier_free_guidance,
_attention_auto_machine_weight,
_gn_auto_machine_weight,
_style_fidelity,
_reference_attn,
_reference_adain,
_dtype=torch.float16,
batch_size=1,
num_images_per_prompt=1,
device=torch.device("cpu"),
_fusion_blocks="midup",
):
"""
Registers reference hooks for the model.
This function is responsible for registering reference hooks in the model,
which are used to modify the attention mechanism and group normalization layers.
It takes various parameters as input, such as mode,
do_classifier_free_guidance, _attention_auto_machine_weight, _gn_auto_machine_weight, _style_fidelity,
_reference_attn, _reference_adain, _dtype, batch_size, num_images_per_prompt, device, and _fusion_blocks.
Args:
self: Reference to the instance of the class.
mode: The mode of operation for the reference hooks.
do_classifier_free_guidance: A boolean flag indicating whether to use classifier-free guidance.
_attention_auto_machine_weight: The weight for the attention auto-machine.
_gn_auto_machine_weight: The weight for the group normalization auto-machine.
_style_fidelity: The style fidelity for the reference hooks.
_reference_attn: A boolean flag indicating whether to use reference attention.
_reference_adain: A boolean flag indicating whether to use reference AdaIN.
_dtype: The data type for the reference hooks.
batch_size: The batch size for the reference hooks.
num_images_per_prompt: The number of images per prompt for the reference hooks.
device: The device for the reference hooks.
_fusion_blocks: The fusion blocks for the reference hooks.
Returns:
None
"""
MODE = mode
if do_classifier_free_guidance:
uc_mask = (
torch.Tensor(
[1] * batch_size * num_images_per_prompt * 16
+ [0] * batch_size * num_images_per_prompt * 16
)
.to(device)
.bool()
)
else:
uc_mask = (
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
.to(device)
.bool()
)
def hacked_basic_transformer_inner_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
video_length=None,
):
gate_msa = None
shift_mlp = None
scale_mlp = None
gate_mlp = None
if self.use_ada_layer_norm: # False
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.norm1(
hidden_states,
timestep,
class_labels,
hidden_dtype=hidden_states.dtype,
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Self-Attention
# self.only_cross_attention = False
cross_attention_kwargs = (
cross_attention_kwargs if cross_attention_kwargs is not None else {}
)
if self.only_cross_attention:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=(
encoder_hidden_states if self.only_cross_attention else None
),
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
if MODE == "write":
self.bank.append(norm_hidden_states.clone())
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=(
encoder_hidden_states if self.only_cross_attention else None
),
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if MODE == "read":
bank_fea = [
rearrange(
rearrange(
d,
"(b s) l c -> b s l c",
b=norm_hidden_states.shape[0] // video_length,
)[:, 0, :, :]
# .unsqueeze(1)
.repeat(1, video_length, 1, 1),
"b t l c -> (b t) l c",
)
for d in self.bank
]
motion_frames_fea = [rearrange(
d,
"(b s) l c -> b s l c",
b=norm_hidden_states.shape[0] // video_length,
)[:, 1:, :, :] for d in self.bank]
modify_norm_hidden_states = torch.cat(
[norm_hidden_states] + bank_fea, dim=1
)
hidden_states_uc = (
self.attn1(
norm_hidden_states,
encoder_hidden_states=modify_norm_hidden_states,
attention_mask=attention_mask,
)
+ hidden_states
)
if do_classifier_free_guidance:
hidden_states_c = hidden_states_uc.clone()
_uc_mask = uc_mask.clone()
if hidden_states.shape[0] != _uc_mask.shape[0]:
_uc_mask = (
torch.Tensor(
[1] * (hidden_states.shape[0] // 2)
+ [0] * (hidden_states.shape[0] // 2)
)
.to(device)
.bool()
)
hidden_states_c[_uc_mask] = (
self.attn1(
norm_hidden_states[_uc_mask],
encoder_hidden_states=norm_hidden_states[_uc_mask],
attention_mask=attention_mask,
)
+ hidden_states[_uc_mask]
)
hidden_states = hidden_states_c.clone()
else:
hidden_states = hidden_states_uc
# self.bank.clear()
if self.attn2 is not None:
# Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
hidden_states = (
self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
)
+ hidden_states
)
# Feed-forward
hidden_states = self.ff(self.norm3(
hidden_states)) + hidden_states
# Temporal-Attention
if self.unet_use_temporal_attention:
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
norm_hidden_states = (
self.norm_temp(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm_temp(hidden_states)
)
hidden_states = (
self.attn_temp(norm_hidden_states) + hidden_states
)
hidden_states = rearrange(
hidden_states, "(b d) f c -> (b f) d c", d=d
)
return hidden_states, motion_frames_fea
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
# 2. Cross-Attention
tmp = norm_hidden_states.shape[0] // encoder_hidden_states.shape[0]
attn_output = self.attn2(
norm_hidden_states,
# TODO: repeat这个地方需要斟酌一下
encoder_hidden_states=encoder_hidden_states.repeat(
tmp, 1, 1),
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = (
norm_hidden_states *
(1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
if self.reference_attn:
if self.fusion_blocks == "midup":
attn_modules = [
module
for module in (
torch_dfs(self.unet.mid_block) +
torch_dfs(self.unet.up_blocks)
)
if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
]
elif self.fusion_blocks == "full":
attn_modules = [
module
for module in torch_dfs(self.unet)
if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
]
attn_modules = sorted(
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
if isinstance(module, BasicTransformerBlock):
module.forward = hacked_basic_transformer_inner_forward.__get__(
module,
BasicTransformerBlock)
if isinstance(module, TemporalBasicTransformerBlock):
module.forward = hacked_basic_transformer_inner_forward.__get__(
module,
TemporalBasicTransformerBlock)
module.bank = []
module.attn_weight = float(i) / float(len(attn_modules))
def update(self, writer, dtype=torch.float16):
"""
Update the model's parameters.
Args:
writer (torch.nn.Module): The model's writer object.
dtype (torch.dtype, optional): The data type to be used for the update. Defaults to torch.float16.
Returns:
None.
"""
if self.reference_attn:
if self.fusion_blocks == "midup":
reader_attn_modules = [
module
for module in (
torch_dfs(self.unet.mid_block) +
torch_dfs(self.unet.up_blocks)
)
if isinstance(module, TemporalBasicTransformerBlock)
]
writer_attn_modules = [
module
for module in (
torch_dfs(writer.unet.mid_block)
+ torch_dfs(writer.unet.up_blocks)
)
if isinstance(module, BasicTransformerBlock)
]
elif self.fusion_blocks == "full":
reader_attn_modules = [
module
for module in torch_dfs(self.unet)
if isinstance(module, TemporalBasicTransformerBlock)
]
writer_attn_modules = [
module
for module in torch_dfs(writer.unet)
if isinstance(module, BasicTransformerBlock)
]
assert len(reader_attn_modules) == len(writer_attn_modules)
reader_attn_modules = sorted(
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
writer_attn_modules = sorted(
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
for r, w in zip(reader_attn_modules, writer_attn_modules):
r.bank = [v.clone().to(dtype) for v in w.bank]
def clear(self):
"""
Clears the attention bank of all reader attention modules.
This method is used when the `reference_attn` attribute is set to `True`.
It clears the attention bank of all reader attention modules inside the UNet
model based on the selected `fusion_blocks` mode.
If `fusion_blocks` is set to "midup", it searches for reader attention modules
in both the mid block and up blocks of the UNet model. If `fusion_blocks` is set
to "full", it searches for reader attention modules in the entire UNet model.
It sorts the reader attention modules by the number of neurons in their
`norm1.normalized_shape[0]` attribute in descending order. This sorting ensures
that the modules with more neurons are cleared first.
Finally, it iterates through the sorted list of reader attention modules and
calls the `clear()` method on each module's `bank` attribute to clear the
attention bank.
"""
if self.reference_attn:
if self.fusion_blocks == "midup":
reader_attn_modules = [
module
for module in (
torch_dfs(self.unet.mid_block) +
torch_dfs(self.unet.up_blocks)
)
if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
]
elif self.fusion_blocks == "full":
reader_attn_modules = [
module
for module in torch_dfs(self.unet)
if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
]
reader_attn_modules = sorted(
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
for r in reader_attn_modules:
r.bank.clear()
|