Spaces:
Paused
Paused
Upload 4 files
Browse files- xdecoder/body/build.py +13 -0
- xdecoder/body/registry.py +14 -0
- xdecoder/body/transformer_blocks.py +370 -0
- xdecoder/body/xdecoder_head.py +123 -0
xdecoder/body/build.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .registry import model_entrypoints
|
2 |
+
from .registry import is_model
|
3 |
+
|
4 |
+
from .xdecoder_head import *
|
5 |
+
|
6 |
+
|
7 |
+
def build_xdecoder_head(config, *args, **kwargs):
|
8 |
+
model_name = config['MODEL']['HEAD']
|
9 |
+
if not is_model(model_name):
|
10 |
+
raise ValueError(f'Unkown model: {model_name}')
|
11 |
+
|
12 |
+
body = model_entrypoints(model_name)(config, *args, **kwargs)
|
13 |
+
return body
|
xdecoder/body/registry.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_model_entrypoints = {}
|
2 |
+
|
3 |
+
|
4 |
+
def register_body(fn):
|
5 |
+
module_name_split = fn.__module__.split('.')
|
6 |
+
model_name = module_name_split[-1]
|
7 |
+
_model_entrypoints[model_name] = fn
|
8 |
+
return fn
|
9 |
+
|
10 |
+
def model_entrypoints(model_name):
|
11 |
+
return _model_entrypoints[model_name]
|
12 |
+
|
13 |
+
def is_model(model_name):
|
14 |
+
return model_name in _model_entrypoints
|
xdecoder/body/transformer_blocks.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py
|
3 |
+
"""
|
4 |
+
Transformer class.
|
5 |
+
|
6 |
+
Copy-paste from torch.nn.Transformer with modifications:
|
7 |
+
* positional encodings are passed in MHattention
|
8 |
+
* extra LN at the end of encoder is removed
|
9 |
+
* decoder returns a stack of activations from all decoding layers
|
10 |
+
"""
|
11 |
+
import copy
|
12 |
+
from typing import List, Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch import Tensor, nn
|
17 |
+
|
18 |
+
|
19 |
+
class Transformer(nn.Module):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
d_model=512,
|
23 |
+
nhead=8,
|
24 |
+
num_encoder_layers=6,
|
25 |
+
num_decoder_layers=6,
|
26 |
+
dim_feedforward=2048,
|
27 |
+
dropout=0.1,
|
28 |
+
activation="relu",
|
29 |
+
normalize_before=False,
|
30 |
+
return_intermediate_dec=False,
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
encoder_layer = TransformerEncoderLayer(
|
35 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
36 |
+
)
|
37 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
38 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
39 |
+
|
40 |
+
decoder_layer = TransformerDecoderLayer(
|
41 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
42 |
+
)
|
43 |
+
decoder_norm = nn.LayerNorm(d_model)
|
44 |
+
self.decoder = TransformerDecoder(
|
45 |
+
decoder_layer,
|
46 |
+
num_decoder_layers,
|
47 |
+
decoder_norm,
|
48 |
+
return_intermediate=return_intermediate_dec,
|
49 |
+
)
|
50 |
+
|
51 |
+
self._reset_parameters()
|
52 |
+
|
53 |
+
self.d_model = d_model
|
54 |
+
self.nhead = nhead
|
55 |
+
|
56 |
+
def _reset_parameters(self):
|
57 |
+
for p in self.parameters():
|
58 |
+
if p.dim() > 1:
|
59 |
+
nn.init.xavier_uniform_(p)
|
60 |
+
|
61 |
+
def forward(self, src, mask, query_embed, pos_embed):
|
62 |
+
# flatten NxCxHxW to HWxNxC
|
63 |
+
bs, c, h, w = src.shape
|
64 |
+
src = src.flatten(2).permute(2, 0, 1)
|
65 |
+
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
|
66 |
+
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
67 |
+
if mask is not None:
|
68 |
+
mask = mask.flatten(1)
|
69 |
+
|
70 |
+
tgt = torch.zeros_like(query_embed)
|
71 |
+
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
72 |
+
hs = self.decoder(
|
73 |
+
tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
|
74 |
+
)
|
75 |
+
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
|
76 |
+
|
77 |
+
|
78 |
+
class TransformerEncoder(nn.Module):
|
79 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
80 |
+
super().__init__()
|
81 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
82 |
+
self.num_layers = num_layers
|
83 |
+
self.norm = norm
|
84 |
+
|
85 |
+
def forward(
|
86 |
+
self,
|
87 |
+
src,
|
88 |
+
mask: Optional[Tensor] = None,
|
89 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
90 |
+
pos: Optional[Tensor] = None,
|
91 |
+
):
|
92 |
+
output = src
|
93 |
+
|
94 |
+
for layer in self.layers:
|
95 |
+
output = layer(
|
96 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
|
97 |
+
)
|
98 |
+
|
99 |
+
if self.norm is not None:
|
100 |
+
output = self.norm(output)
|
101 |
+
|
102 |
+
return output
|
103 |
+
|
104 |
+
|
105 |
+
class TransformerDecoder(nn.Module):
|
106 |
+
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
107 |
+
super().__init__()
|
108 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
109 |
+
self.num_layers = num_layers
|
110 |
+
self.norm = norm
|
111 |
+
self.return_intermediate = return_intermediate
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
tgt,
|
116 |
+
memory,
|
117 |
+
tgt_mask: Optional[Tensor] = None,
|
118 |
+
memory_mask: Optional[Tensor] = None,
|
119 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
120 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
121 |
+
pos: Optional[Tensor] = None,
|
122 |
+
query_pos: Optional[Tensor] = None,
|
123 |
+
):
|
124 |
+
output = tgt
|
125 |
+
|
126 |
+
intermediate = []
|
127 |
+
|
128 |
+
for layer in self.layers:
|
129 |
+
output = layer(
|
130 |
+
output,
|
131 |
+
memory,
|
132 |
+
tgt_mask=tgt_mask,
|
133 |
+
memory_mask=memory_mask,
|
134 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
135 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
136 |
+
pos=pos,
|
137 |
+
query_pos=query_pos,
|
138 |
+
)
|
139 |
+
if self.return_intermediate:
|
140 |
+
intermediate.append(self.norm(output))
|
141 |
+
|
142 |
+
if self.norm is not None:
|
143 |
+
output = self.norm(output)
|
144 |
+
if self.return_intermediate:
|
145 |
+
intermediate.pop()
|
146 |
+
intermediate.append(output)
|
147 |
+
|
148 |
+
if self.return_intermediate:
|
149 |
+
return torch.stack(intermediate)
|
150 |
+
|
151 |
+
return output.unsqueeze(0)
|
152 |
+
|
153 |
+
|
154 |
+
class TransformerEncoderLayer(nn.Module):
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
d_model,
|
158 |
+
nhead,
|
159 |
+
dim_feedforward=2048,
|
160 |
+
dropout=0.1,
|
161 |
+
activation="relu",
|
162 |
+
normalize_before=False,
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
166 |
+
# Implementation of Feedforward model
|
167 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
168 |
+
self.dropout = nn.Dropout(dropout)
|
169 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
170 |
+
|
171 |
+
self.norm1 = nn.LayerNorm(d_model)
|
172 |
+
self.norm2 = nn.LayerNorm(d_model)
|
173 |
+
self.dropout1 = nn.Dropout(dropout)
|
174 |
+
self.dropout2 = nn.Dropout(dropout)
|
175 |
+
|
176 |
+
self.activation = _get_activation_fn(activation)
|
177 |
+
self.normalize_before = normalize_before
|
178 |
+
|
179 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
180 |
+
return tensor if pos is None else tensor + pos
|
181 |
+
|
182 |
+
def forward_post(
|
183 |
+
self,
|
184 |
+
src,
|
185 |
+
src_mask: Optional[Tensor] = None,
|
186 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
187 |
+
pos: Optional[Tensor] = None,
|
188 |
+
):
|
189 |
+
q = k = self.with_pos_embed(src, pos)
|
190 |
+
|
191 |
+
src2 = self.self_attn(
|
192 |
+
q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
193 |
+
)[0]
|
194 |
+
src = src + self.dropout1(src2)
|
195 |
+
src = self.norm1(src)
|
196 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
197 |
+
src = src + self.dropout2(src2)
|
198 |
+
src = self.norm2(src)
|
199 |
+
return src
|
200 |
+
|
201 |
+
def forward_pre(
|
202 |
+
self,
|
203 |
+
src,
|
204 |
+
src_mask: Optional[Tensor] = None,
|
205 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
206 |
+
pos: Optional[Tensor] = None,
|
207 |
+
):
|
208 |
+
src2 = self.norm1(src)
|
209 |
+
q = k = self.with_pos_embed(src2, pos)
|
210 |
+
src2 = self.self_attn(
|
211 |
+
q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
212 |
+
)[0]
|
213 |
+
src = src + self.dropout1(src2)
|
214 |
+
src2 = self.norm2(src)
|
215 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
216 |
+
src = src + self.dropout2(src2)
|
217 |
+
return src
|
218 |
+
|
219 |
+
def forward(
|
220 |
+
self,
|
221 |
+
src,
|
222 |
+
src_mask: Optional[Tensor] = None,
|
223 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
224 |
+
pos: Optional[Tensor] = None,
|
225 |
+
):
|
226 |
+
if self.normalize_before:
|
227 |
+
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
228 |
+
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
229 |
+
|
230 |
+
|
231 |
+
class TransformerDecoderLayer(nn.Module):
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
d_model,
|
235 |
+
nhead,
|
236 |
+
dim_feedforward=2048,
|
237 |
+
dropout=0.1,
|
238 |
+
activation="relu",
|
239 |
+
normalize_before=False,
|
240 |
+
):
|
241 |
+
super().__init__()
|
242 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
243 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
244 |
+
# Implementation of Feedforward model
|
245 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
246 |
+
self.dropout = nn.Dropout(dropout)
|
247 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
248 |
+
|
249 |
+
self.norm1 = nn.LayerNorm(d_model)
|
250 |
+
self.norm2 = nn.LayerNorm(d_model)
|
251 |
+
self.norm3 = nn.LayerNorm(d_model)
|
252 |
+
self.dropout1 = nn.Dropout(dropout)
|
253 |
+
self.dropout2 = nn.Dropout(dropout)
|
254 |
+
self.dropout3 = nn.Dropout(dropout)
|
255 |
+
|
256 |
+
self.activation = _get_activation_fn(activation)
|
257 |
+
self.normalize_before = normalize_before
|
258 |
+
|
259 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
260 |
+
return tensor if pos is None else tensor + pos
|
261 |
+
|
262 |
+
def forward_post(
|
263 |
+
self,
|
264 |
+
tgt,
|
265 |
+
memory,
|
266 |
+
tgt_mask: Optional[Tensor] = None,
|
267 |
+
memory_mask: Optional[Tensor] = None,
|
268 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
269 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
270 |
+
pos: Optional[Tensor] = None,
|
271 |
+
query_pos: Optional[Tensor] = None,
|
272 |
+
):
|
273 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
274 |
+
tgt2 = self.self_attn(
|
275 |
+
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
276 |
+
)[0]
|
277 |
+
tgt = tgt + self.dropout1(tgt2)
|
278 |
+
tgt = self.norm1(tgt)
|
279 |
+
tgt2 = self.multihead_attn(
|
280 |
+
query=self.with_pos_embed(tgt, query_pos),
|
281 |
+
key=self.with_pos_embed(memory, pos),
|
282 |
+
value=memory,
|
283 |
+
attn_mask=memory_mask,
|
284 |
+
key_padding_mask=memory_key_padding_mask,
|
285 |
+
)[0]
|
286 |
+
tgt = tgt + self.dropout2(tgt2)
|
287 |
+
tgt = self.norm2(tgt)
|
288 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
289 |
+
tgt = tgt + self.dropout3(tgt2)
|
290 |
+
tgt = self.norm3(tgt)
|
291 |
+
return tgt
|
292 |
+
|
293 |
+
def forward_pre(
|
294 |
+
self,
|
295 |
+
tgt,
|
296 |
+
memory,
|
297 |
+
tgt_mask: Optional[Tensor] = None,
|
298 |
+
memory_mask: Optional[Tensor] = None,
|
299 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
300 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
301 |
+
pos: Optional[Tensor] = None,
|
302 |
+
query_pos: Optional[Tensor] = None,
|
303 |
+
):
|
304 |
+
tgt2 = self.norm1(tgt)
|
305 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
306 |
+
tgt2 = self.self_attn(
|
307 |
+
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
308 |
+
)[0]
|
309 |
+
tgt = tgt + self.dropout1(tgt2)
|
310 |
+
tgt2 = self.norm2(tgt)
|
311 |
+
tgt2 = self.multihead_attn(
|
312 |
+
query=self.with_pos_embed(tgt2, query_pos),
|
313 |
+
key=self.with_pos_embed(memory, pos),
|
314 |
+
value=memory,
|
315 |
+
attn_mask=memory_mask,
|
316 |
+
key_padding_mask=memory_key_padding_mask,
|
317 |
+
)[0]
|
318 |
+
tgt = tgt + self.dropout2(tgt2)
|
319 |
+
tgt2 = self.norm3(tgt)
|
320 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
321 |
+
tgt = tgt + self.dropout3(tgt2)
|
322 |
+
return tgt
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
tgt,
|
327 |
+
memory,
|
328 |
+
tgt_mask: Optional[Tensor] = None,
|
329 |
+
memory_mask: Optional[Tensor] = None,
|
330 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
331 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
332 |
+
pos: Optional[Tensor] = None,
|
333 |
+
query_pos: Optional[Tensor] = None,
|
334 |
+
):
|
335 |
+
if self.normalize_before:
|
336 |
+
return self.forward_pre(
|
337 |
+
tgt,
|
338 |
+
memory,
|
339 |
+
tgt_mask,
|
340 |
+
memory_mask,
|
341 |
+
tgt_key_padding_mask,
|
342 |
+
memory_key_padding_mask,
|
343 |
+
pos,
|
344 |
+
query_pos,
|
345 |
+
)
|
346 |
+
return self.forward_post(
|
347 |
+
tgt,
|
348 |
+
memory,
|
349 |
+
tgt_mask,
|
350 |
+
memory_mask,
|
351 |
+
tgt_key_padding_mask,
|
352 |
+
memory_key_padding_mask,
|
353 |
+
pos,
|
354 |
+
query_pos,
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
def _get_clones(module, N):
|
359 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
360 |
+
|
361 |
+
|
362 |
+
def _get_activation_fn(activation):
|
363 |
+
"""Return an activation function given a string"""
|
364 |
+
if activation == "relu":
|
365 |
+
return F.relu
|
366 |
+
if activation == "gelu":
|
367 |
+
return F.gelu
|
368 |
+
if activation == "glu":
|
369 |
+
return F.glu
|
370 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
xdecoder/body/xdecoder_head.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
5 |
+
# Copyright (c) 2022 Microsoft
|
6 |
+
# Licensed under The MIT License [see LICENSE for details]
|
7 |
+
# Written by Jianwei Yang ([email protected]), Xueyan Zou ([email protected])
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
from typing import Dict
|
11 |
+
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from detectron2.layers import ShapeSpec
|
15 |
+
|
16 |
+
from .registry import register_body
|
17 |
+
from .encoder import build_encoder
|
18 |
+
from .decoder import build_decoder
|
19 |
+
from ..utils import configurable
|
20 |
+
|
21 |
+
|
22 |
+
class XDecoderHead(nn.Module):
|
23 |
+
|
24 |
+
@configurable
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
input_shape: Dict[str, ShapeSpec],
|
28 |
+
*,
|
29 |
+
num_classes: int,
|
30 |
+
pixel_decoder: nn.Module,
|
31 |
+
loss_weight: float = 1.0,
|
32 |
+
ignore_value: int = -1,
|
33 |
+
# extra parameters
|
34 |
+
transformer_predictor: nn.Module,
|
35 |
+
transformer_in_feature: str,
|
36 |
+
):
|
37 |
+
"""
|
38 |
+
NOTE: this interface is experimental.
|
39 |
+
Args:
|
40 |
+
input_shape: shapes (channels and stride) of the input features
|
41 |
+
num_classes: number of classes to predict
|
42 |
+
pixel_decoder: the pixel decoder module
|
43 |
+
loss_weight: loss weight
|
44 |
+
ignore_value: category id to be ignored during training.
|
45 |
+
transformer_predictor: the transformer decoder that makes prediction
|
46 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
47 |
+
"""
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
51 |
+
self.in_features = [k for k, v in input_shape]
|
52 |
+
feature_strides = [v.stride for k, v in input_shape]
|
53 |
+
feature_channels = [v.channels for k, v in input_shape]
|
54 |
+
|
55 |
+
self.ignore_value = ignore_value
|
56 |
+
self.common_stride = 4
|
57 |
+
self.loss_weight = loss_weight
|
58 |
+
|
59 |
+
self.pixel_decoder = pixel_decoder
|
60 |
+
self.predictor = transformer_predictor
|
61 |
+
self.transformer_in_feature = transformer_in_feature
|
62 |
+
|
63 |
+
self.num_classes = num_classes
|
64 |
+
|
65 |
+
@classmethod
|
66 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict):
|
67 |
+
|
68 |
+
in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE']
|
69 |
+
enc_cfg = cfg['MODEL']['ENCODER']
|
70 |
+
dec_cfg = cfg['MODEL']['DECODER']
|
71 |
+
|
72 |
+
# figure out in_channels to transformer predictor
|
73 |
+
if in_features_type == "transformer_encoder":
|
74 |
+
transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
|
75 |
+
elif in_features_type == "pixel_embedding":
|
76 |
+
transformer_predictor_in_channels = enc_cfg['MASK_DIM']
|
77 |
+
elif in_features_type == "multi_scale_pixel_decoder": # for maskformer2
|
78 |
+
transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
|
79 |
+
else:
|
80 |
+
transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels
|
81 |
+
|
82 |
+
return {
|
83 |
+
"input_shape": {
|
84 |
+
k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
|
85 |
+
},
|
86 |
+
"ignore_value": enc_cfg['IGNORE_VALUE'],
|
87 |
+
"num_classes": enc_cfg.get('NUM_CLASSES', None),
|
88 |
+
"pixel_decoder": build_encoder(cfg, input_shape),
|
89 |
+
"loss_weight": enc_cfg['LOSS_WEIGHT'],
|
90 |
+
"transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'],
|
91 |
+
"transformer_predictor": build_decoder(
|
92 |
+
cfg,
|
93 |
+
transformer_predictor_in_channels,
|
94 |
+
lang_encoder,
|
95 |
+
mask_classification=True,
|
96 |
+
extra=extra,
|
97 |
+
),
|
98 |
+
}
|
99 |
+
|
100 |
+
def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
|
101 |
+
return self.layers(features, mask, target_queries, target_vlp, task, extra)
|
102 |
+
|
103 |
+
def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
|
104 |
+
mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
|
105 |
+
|
106 |
+
if self.transformer_in_feature == "multi_scale_pixel_decoder":
|
107 |
+
predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra)
|
108 |
+
else:
|
109 |
+
if self.transformer_in_feature == "transformer_encoder":
|
110 |
+
assert (
|
111 |
+
transformer_encoder_features is not None
|
112 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
113 |
+
predictions = self.predictor(transformer_encoder_features, mask_features, mask)
|
114 |
+
elif self.transformer_in_feature == "pixel_embedding":
|
115 |
+
predictions = self.predictor(mask_features, mask_features, mask)
|
116 |
+
else:
|
117 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
|
118 |
+
return predictions
|
119 |
+
|
120 |
+
|
121 |
+
@register_body
|
122 |
+
def get_xdecoder_head(cfg, input_shape, lang_encoder, extra):
|
123 |
+
return XDecoderHead(cfg, input_shape, lang_encoder, extra)
|