import gradio as gr from share_btn import community_icon_html, loading_icon_html, share_js import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() def infer(prompt): #prompt = "Darth Vader is surfing on waves" video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames video_path = export_to_video(video_frames) print(video_path) return video_path, gr.Group.update(visible=True) css = """ #col-container {max-width: 510px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """
A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output.
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/zeroscope?duplicate=true)