Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
-
import
|
|
|
5 |
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
return tokenizer, model
|
12 |
|
13 |
-
def generate_response(prompt, tokenizer, model):
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
with torch.no_grad():
|
16 |
-
outputs = model.generate(inputs,
|
17 |
-
temperature=0.9, top_k=50, top_p=0.95)
|
18 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
-
return add_mistakes(response)
|
20 |
-
|
21 |
-
def add_mistakes(text):
|
22 |
-
words = text.split()
|
23 |
-
for i in range(len(words)):
|
24 |
-
if random.random() < 0.2: # 20% шанс ошибки в слове
|
25 |
-
words[i] = misspell_word(words[i])
|
26 |
-
return ' '.join(words)
|
27 |
-
|
28 |
-
def misspell_word(word):
|
29 |
-
if len(word) < 3:
|
30 |
-
return word
|
31 |
-
vowels = 'аеёиоуыэюя'
|
32 |
-
consonants = 'бвгджзйклмнпрстфхцчшщ'
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
for i, char in enumerate(word):
|
37 |
-
if char.lower() in vowels:
|
38 |
-
replacement = random.choice(vowels)
|
39 |
-
return word[:i] + replacement + word[i+1:]
|
40 |
-
else:
|
41 |
-
# Заменяем случайную согласную
|
42 |
-
for i, char in enumerate(word):
|
43 |
-
if char.lower() in consonants:
|
44 |
-
replacement = random.choice(consonants)
|
45 |
-
return word[:i] + replacement + word[i+1:]
|
46 |
-
return word
|
47 |
|
48 |
-
st.title("
|
49 |
|
50 |
tokenizer, model = load_model()
|
51 |
|
@@ -55,14 +34,27 @@ if "messages" not in st.session_state:
|
|
55 |
for message in st.session_state.messages:
|
56 |
with st.chat_message(message["role"]):
|
57 |
st.markdown(message["content"])
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
with st.chat_message("assistant"):
|
65 |
-
response = generate_response(prompt, tokenizer, model)
|
66 |
st.markdown(response)
|
67 |
|
68 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
12 |
return tokenizer, model
|
13 |
|
14 |
+
def generate_response(prompt, image, tokenizer, model):
|
15 |
+
if image:
|
16 |
+
image = Image.open(image).convert('RGB')
|
17 |
+
inputs = tokenizer.from_pretrained(prompt, images=[image], return_tensors='pt').to(model.device)
|
18 |
+
else:
|
19 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
20 |
+
|
21 |
with torch.no_grad():
|
22 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
st.title("Чат с Qwen VL-7B-Instruct")
|
28 |
|
29 |
tokenizer, model = load_model()
|
30 |
|
|
|
34 |
for message in st.session_state.messages:
|
35 |
with st.chat_message(message["role"]):
|
36 |
st.markdown(message["content"])
|
37 |
+
if "image" in message:
|
38 |
+
st.image(message["image"])
|
39 |
+
|
40 |
+
prompt = st.chat_input("Введите ваше сообщение")
|
41 |
+
uploaded_file = st.file_uploader("Загрузите изображение (необязательно)", type=["png", "jpg", "jpeg"])
|
42 |
+
|
43 |
+
if prompt or uploaded_file:
|
44 |
+
if uploaded_file:
|
45 |
+
image = Image.open(uploaded_file)
|
46 |
+
st.session_state.messages.append({"role": "user", "content": prompt or "Опишите это изображение", "image": uploaded_file})
|
47 |
+
with st.chat_message("user"):
|
48 |
+
if prompt:
|
49 |
+
st.markdown(prompt)
|
50 |
+
st.image(image)
|
51 |
+
else:
|
52 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
53 |
+
with st.chat_message("user"):
|
54 |
+
st.markdown(prompt)
|
55 |
|
56 |
with st.chat_message("assistant"):
|
57 |
+
response = generate_response(prompt, uploaded_file, tokenizer, model)
|
58 |
st.markdown(response)
|
59 |
|
60 |
st.session_state.messages.append({"role": "assistant", "content": response})
|