import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM def initialize_translator(model_name): return pipeline("translation", model=model_name) model_name = "Helsinki-NLP/opus-mt-en-ru" translator = initialize_translator(model_name) def translate_text(text): if text: result = translator(text) return result[0]['translation_text'] return "" st.title("Text Translation App") st.sidebar.header("Settings") language_pair = st.sidebar.selectbox( "Choose language pair:", [ "English to Russian (Helsinki-NLP/opus-mt-en-ru)", "Russian to English (Helsinki-NLP/opus-mt-ru-en)" ] ) if "Russian to English" in language_pair: model_name = "Helsinki-NLP/opus-mt-ru-en" else: model_name = "Helsinki-NLP/opus-mt-en-ru" translator = initialize_translator(model_name) st.subheader("Enter text to translate:") user_input = st.text_area("Your text here (e.g., 'The weather is nice today.'):", height=200) if st.button("Translate"): translation = translate_text(user_input) st.subheader("Translated Text:") st.write(translation) else: st.info("Enter text and click 'Translate' to see the result.") if __name__ == '__main__': import streamlit.web.cli as stcli stcli.main()