Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
import os
|
2 |
import faiss
|
|
|
3 |
import numpy as np
|
4 |
import requests
|
5 |
-
import streamlit as st
|
6 |
|
7 |
from pypdf import PdfReader
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
|
10 |
-
|
11 |
# 1. PDF Parsing and Chunking
|
12 |
-
|
13 |
def extract_pdf_text(pdf_file) -> str:
|
14 |
-
"""
|
15 |
-
Read and extract text from each page of an uploaded PDF file.
|
16 |
-
"""
|
17 |
reader = PdfReader(pdf_file)
|
18 |
all_text = []
|
19 |
for page in reader.pages:
|
@@ -22,10 +19,6 @@ def extract_pdf_text(pdf_file) -> str:
|
|
22 |
return "\n".join(all_text)
|
23 |
|
24 |
def chunk_text(text, chunk_size=300, overlap=50):
|
25 |
-
"""
|
26 |
-
Splits text into overlapping chunks, each approx. 'chunk_size' tokens.
|
27 |
-
'overlap' is how many tokens from the previous chunk to include again.
|
28 |
-
"""
|
29 |
words = text.split()
|
30 |
chunks = []
|
31 |
start = 0
|
@@ -36,48 +29,36 @@ def chunk_text(text, chunk_size=300, overlap=50):
|
|
36 |
start += (chunk_size - overlap)
|
37 |
return chunks
|
38 |
|
39 |
-
|
40 |
# 2. Embedding Model
|
41 |
-
|
42 |
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
43 |
|
44 |
-
|
45 |
# 3. Build FAISS Index
|
46 |
-
|
47 |
def build_faiss_index(chunks):
|
48 |
-
"""
|
49 |
-
Creates a FAISS index from embedded chunks.
|
50 |
-
Returns (index, chunk_embeddings).
|
51 |
-
"""
|
52 |
chunk_embeddings = embedding_model.encode(chunks, show_progress_bar=False)
|
53 |
chunk_embeddings = np.array(chunk_embeddings, dtype='float32')
|
54 |
-
|
55 |
dimension = chunk_embeddings.shape[1]
|
56 |
index = faiss.IndexFlatL2(dimension)
|
57 |
index.add(chunk_embeddings)
|
58 |
-
|
59 |
return index, chunk_embeddings
|
60 |
|
61 |
-
|
62 |
# 4. Retrieval Function
|
63 |
-
|
64 |
def retrieve_chunks(query, index, chunks, top_k=3):
|
65 |
-
"""
|
66 |
-
Embeds 'query' and retrieves the top_k most relevant chunks from 'index'.
|
67 |
-
"""
|
68 |
query_embedding = embedding_model.encode([query], show_progress_bar=False)
|
69 |
query_embedding = np.array(query_embedding, dtype='float32')
|
70 |
|
71 |
distances, indices = index.search(query_embedding, top_k)
|
72 |
return [chunks[i] for i in indices[0]]
|
73 |
|
74 |
-
|
75 |
# 5. Gemini LLM Integration
|
76 |
-
|
77 |
def gemini_generate(prompt):
|
78 |
-
"""
|
79 |
-
Calls Google's Gemini API with the environment variable GEMINI_API_KEY.
|
80 |
-
"""
|
81 |
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
|
82 |
if not gemini_api_key:
|
83 |
return "Error: No GEMINI_API_KEY found in environment variables."
|
@@ -87,7 +68,8 @@ def gemini_generate(prompt):
|
|
87 |
"v1beta/models/gemini-1.5-flash:generateContent"
|
88 |
f"?key={gemini_api_key}"
|
89 |
)
|
90 |
-
|
|
|
91 |
"contents": [
|
92 |
{
|
93 |
"parts": [
|
@@ -97,32 +79,27 @@ def gemini_generate(prompt):
|
|
97 |
]
|
98 |
}
|
99 |
headers = {"Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
100 |
|
|
|
101 |
try:
|
102 |
-
response = requests.post(url, headers=headers, json=payload)
|
103 |
-
response.raise_for_status()
|
104 |
-
r_data = response.json()
|
105 |
-
# Extract the text from the 'candidates' structure:
|
106 |
return r_data["candidates"][0]["content"]["parts"][0]["text"]
|
107 |
-
except
|
108 |
-
return f"
|
109 |
-
except KeyError:
|
110 |
-
return f"Parsing error or unexpected response format: {response.text}"
|
111 |
|
112 |
-
|
113 |
# 6. RAG QA Function
|
114 |
-
|
115 |
def answer_question_with_RAG(user_question, index, chunks):
|
116 |
-
"""
|
117 |
-
Retrieves relevant chunks, builds an augmented prompt, and calls gemini_generate().
|
118 |
-
"""
|
119 |
relevant_chunks = retrieve_chunks(user_question, index, chunks, top_k=3)
|
120 |
context = "\n\n".join(relevant_chunks)
|
121 |
-
|
122 |
prompt = f"""
|
123 |
You are an AI assistant that knows the details from the uploaded research paper.
|
124 |
Answer the user's question accurately using the context below.
|
125 |
-
If something is not in the context, say
|
126 |
|
127 |
Context:
|
128 |
{context}
|
@@ -133,62 +110,122 @@ def answer_question_with_RAG(user_question, index, chunks):
|
|
133 |
"""
|
134 |
return gemini_generate(prompt)
|
135 |
|
136 |
-
|
137 |
-
#
|
138 |
-
|
139 |
-
def
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
|
147 |
-
st.title("AI-Powered Personal Research Assistant")
|
148 |
-
st.write("Welcome! How may I help you?")
|
149 |
-
|
150 |
-
# Store the FAISS index + chunks in session_state to persist across reruns
|
151 |
-
if "faiss_index" not in st.session_state:
|
152 |
-
st.session_state.faiss_index = None
|
153 |
-
if "chunks" not in st.session_state:
|
154 |
-
st.session_state.chunks = None
|
155 |
-
|
156 |
-
# Step 1: Upload and Process PDF
|
157 |
-
uploaded_pdf = st.file_uploader("Upload your research paper (PDF)", type=["pdf"])
|
158 |
-
if st.button("Process PDF"):
|
159 |
-
if uploaded_pdf is None:
|
160 |
-
st.warning("Please upload a PDF file first.")
|
161 |
-
else:
|
162 |
-
# Read and chunk
|
163 |
-
raw_text = extract_pdf_text(uploaded_pdf)
|
164 |
-
if not raw_text.strip():
|
165 |
-
st.error("No text found in PDF.")
|
166 |
-
return
|
167 |
-
chunks = chunk_text(raw_text, chunk_size=300, overlap=50)
|
168 |
-
if not chunks:
|
169 |
-
st.error("No valid text to chunk.")
|
170 |
-
return
|
171 |
-
# Build index
|
172 |
-
faiss_index, _ = build_faiss_index(chunks)
|
173 |
-
st.session_state.faiss_index = faiss_index
|
174 |
-
st.session_state.chunks = chunks
|
175 |
-
st.success("PDF processed successfully!")
|
176 |
-
|
177 |
-
# Step 2: Ask a Question
|
178 |
-
user_question = st.text_input("Ask a question about your research paper:")
|
179 |
-
if st.button("Get Answer"):
|
180 |
-
if not st.session_state.faiss_index or not st.session_state.chunks:
|
181 |
-
st.warning("Please upload and process a PDF first.")
|
182 |
-
elif not user_question.strip():
|
183 |
-
st.warning("Please enter a valid question.")
|
184 |
-
else:
|
185 |
-
answer = answer_question_with_RAG(
|
186 |
-
user_question,
|
187 |
-
st.session_state.faiss_index,
|
188 |
-
st.session_state.chunks
|
189 |
-
)
|
190 |
-
st.write("### Answer:")
|
191 |
-
st.write(answer)
|
192 |
-
|
193 |
-
if __name__ == "__main__":
|
194 |
-
main()
|
|
|
1 |
import os
|
2 |
import faiss
|
3 |
+
import gradio as gr
|
4 |
import numpy as np
|
5 |
import requests
|
|
|
6 |
|
7 |
from pypdf import PdfReader
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
|
10 |
+
################################################################################
|
11 |
# 1. PDF Parsing and Chunking
|
12 |
+
################################################################################
|
13 |
def extract_pdf_text(pdf_file) -> str:
|
|
|
|
|
|
|
14 |
reader = PdfReader(pdf_file)
|
15 |
all_text = []
|
16 |
for page in reader.pages:
|
|
|
19 |
return "\n".join(all_text)
|
20 |
|
21 |
def chunk_text(text, chunk_size=300, overlap=50):
|
|
|
|
|
|
|
|
|
22 |
words = text.split()
|
23 |
chunks = []
|
24 |
start = 0
|
|
|
29 |
start += (chunk_size - overlap)
|
30 |
return chunks
|
31 |
|
32 |
+
################################################################################
|
33 |
# 2. Embedding Model
|
34 |
+
################################################################################
|
35 |
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
36 |
|
37 |
+
################################################################################
|
38 |
# 3. Build FAISS Index
|
39 |
+
################################################################################
|
40 |
def build_faiss_index(chunks):
|
|
|
|
|
|
|
|
|
41 |
chunk_embeddings = embedding_model.encode(chunks, show_progress_bar=False)
|
42 |
chunk_embeddings = np.array(chunk_embeddings, dtype='float32')
|
|
|
43 |
dimension = chunk_embeddings.shape[1]
|
44 |
index = faiss.IndexFlatL2(dimension)
|
45 |
index.add(chunk_embeddings)
|
|
|
46 |
return index, chunk_embeddings
|
47 |
|
48 |
+
################################################################################
|
49 |
# 4. Retrieval Function
|
50 |
+
################################################################################
|
51 |
def retrieve_chunks(query, index, chunks, top_k=3):
|
|
|
|
|
|
|
52 |
query_embedding = embedding_model.encode([query], show_progress_bar=False)
|
53 |
query_embedding = np.array(query_embedding, dtype='float32')
|
54 |
|
55 |
distances, indices = index.search(query_embedding, top_k)
|
56 |
return [chunks[i] for i in indices[0]]
|
57 |
|
58 |
+
################################################################################
|
59 |
# 5. Gemini LLM Integration
|
60 |
+
################################################################################
|
61 |
def gemini_generate(prompt):
|
|
|
|
|
|
|
62 |
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
|
63 |
if not gemini_api_key:
|
64 |
return "Error: No GEMINI_API_KEY found in environment variables."
|
|
|
68 |
"v1beta/models/gemini-1.5-flash:generateContent"
|
69 |
f"?key={gemini_api_key}"
|
70 |
)
|
71 |
+
|
72 |
+
data = {
|
73 |
"contents": [
|
74 |
{
|
75 |
"parts": [
|
|
|
79 |
]
|
80 |
}
|
81 |
headers = {"Content-Type": "application/json"}
|
82 |
+
response = requests.post(url, headers=headers, json=data)
|
83 |
+
|
84 |
+
if response.status_code != 200:
|
85 |
+
return f"Error {response.status_code}: {response.text}"
|
86 |
|
87 |
+
r_data = response.json()
|
88 |
try:
|
|
|
|
|
|
|
|
|
89 |
return r_data["candidates"][0]["content"]["parts"][0]["text"]
|
90 |
+
except Exception:
|
91 |
+
return f"Parsing error or unexpected response structure: {r_data}"
|
|
|
|
|
92 |
|
93 |
+
################################################################################
|
94 |
# 6. RAG QA Function
|
95 |
+
################################################################################
|
96 |
def answer_question_with_RAG(user_question, index, chunks):
|
|
|
|
|
|
|
97 |
relevant_chunks = retrieve_chunks(user_question, index, chunks, top_k=3)
|
98 |
context = "\n\n".join(relevant_chunks)
|
|
|
99 |
prompt = f"""
|
100 |
You are an AI assistant that knows the details from the uploaded research paper.
|
101 |
Answer the user's question accurately using the context below.
|
102 |
+
If something is not in the context, say you don't know.
|
103 |
|
104 |
Context:
|
105 |
{context}
|
|
|
110 |
"""
|
111 |
return gemini_generate(prompt)
|
112 |
|
113 |
+
################################################################################
|
114 |
+
# 7. Gradio Interface
|
115 |
+
################################################################################
|
116 |
+
def process_pdf(pdf_file):
|
117 |
+
if pdf_file is None:
|
118 |
+
return None, "Please upload a PDF file."
|
119 |
+
|
120 |
+
text = extract_pdf_text(pdf_file.name)
|
121 |
+
if not text:
|
122 |
+
return None, "No text found in PDF."
|
123 |
+
|
124 |
+
chunks = chunk_text(text, chunk_size=300, overlap=50)
|
125 |
+
if not chunks:
|
126 |
+
return None, "No valid text to chunk."
|
127 |
+
|
128 |
+
faiss_index, _ = build_faiss_index(chunks)
|
129 |
+
return (faiss_index, chunks), "PDF processed successfully!"
|
130 |
+
|
131 |
+
def chat_with_paper(query, state):
|
132 |
+
if not state:
|
133 |
+
return "Please upload and process a PDF first."
|
134 |
+
faiss_index, doc_chunks = state
|
135 |
+
if not query or not query.strip():
|
136 |
+
return "Please enter a valid question."
|
137 |
+
return answer_question_with_RAG(query, faiss_index, doc_chunks)
|
138 |
+
|
139 |
+
demo_theme = gr.themes.Soft(primary_hue="slate")
|
140 |
+
|
141 |
+
css_code = """
|
142 |
+
body {
|
143 |
+
background-color: #E6F7FF !important; /* Lightest blue */
|
144 |
+
margin: 0;
|
145 |
+
padding: 0;
|
146 |
+
}
|
147 |
+
|
148 |
+
.block > .inside {
|
149 |
+
margin: auto !important;
|
150 |
+
max-width: 900px !important;
|
151 |
+
border: 4px solid black !important;
|
152 |
+
border-radius: 10px !important;
|
153 |
+
background-color: #FFFFFF !important;
|
154 |
+
padding: 20px !important;
|
155 |
+
}
|
156 |
+
|
157 |
+
#icon-container {
|
158 |
+
text-align: center !important;
|
159 |
+
margin-top: 1rem !important;
|
160 |
+
margin-bottom: 1rem !important;
|
161 |
+
}
|
162 |
+
|
163 |
+
#app-title {
|
164 |
+
text-align: center !important;
|
165 |
+
font-size: 3rem !important;
|
166 |
+
font-weight: 900 !important;
|
167 |
+
margin-bottom: 0.5rem !important;
|
168 |
+
margin-top: 0.5rem !important;
|
169 |
+
}
|
170 |
+
|
171 |
+
#app-welcome {
|
172 |
+
text-align: center !important;
|
173 |
+
font-size: 1.5rem !important;
|
174 |
+
color: #444 !important;
|
175 |
+
margin-bottom: 25px !important;
|
176 |
+
font-weight: 700 !important;
|
177 |
+
}
|
178 |
+
|
179 |
+
button {
|
180 |
+
background-color: #3CB371 !important;
|
181 |
+
color: #ffffff !important;
|
182 |
+
border: none !important;
|
183 |
+
font-weight: 600 !important;
|
184 |
+
cursor: pointer;
|
185 |
+
}
|
186 |
+
|
187 |
+
button:hover {
|
188 |
+
background-color: #2E8B57 !important;
|
189 |
+
}
|
190 |
+
|
191 |
+
textarea, input[type="text"] {
|
192 |
+
text-align: center !important;
|
193 |
+
}
|
194 |
+
"""
|
195 |
+
|
196 |
+
with gr.Blocks(theme=demo_theme, css=css_code) as demo:
|
197 |
+
gr.Markdown("""
|
198 |
+
<div id="icon-container">
|
199 |
+
<img src="https://i.ibb.co/3Wp3yBZ/ai-icon.png" alt="AI icon" style="width:100px;">
|
200 |
+
</div>
|
201 |
+
""")
|
202 |
+
|
203 |
+
gr.Markdown("<div id='app-title'>AI-Powered Personal Research Assistant</div>")
|
204 |
+
gr.Markdown("<div id='app-welcome'>Welcome! How may I help you?</div>")
|
205 |
+
|
206 |
+
state = gr.State()
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
pdf_input = gr.File(label="Upload your research paper (PDF)", file_types=[".pdf"])
|
210 |
+
process_button = gr.Button("Process PDF")
|
211 |
+
|
212 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
213 |
+
|
214 |
+
process_button.click(
|
215 |
+
fn=process_pdf,
|
216 |
+
inputs=pdf_input,
|
217 |
+
outputs=[state, status_output]
|
218 |
+
)
|
219 |
+
|
220 |
+
with gr.Row():
|
221 |
+
user_query = gr.Textbox(label="Ask a question about your research paper:")
|
222 |
+
ask_button = gr.Button("Get Answer")
|
223 |
+
answer_output = gr.Textbox(label="Answer")
|
224 |
+
|
225 |
+
ask_button.click(
|
226 |
+
fn=chat_with_paper,
|
227 |
+
inputs=[user_query, state],
|
228 |
+
outputs=answer_output
|
229 |
)
|
230 |
|
231 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|