Spaces:
Sleeping
Sleeping
File size: 3,852 Bytes
c3212ed b4001c7 c3212ed b2e684b c3212ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import cv2 as cv
import gradio as gr
import numpy as np
#Farklı filtreler için fonksiyon tanımlama
#1
def gaussian_blur_filter(frame):
return cv.GaussianBlur(frame, (15, 15), 0)
#2
def median_blur_filter(frame):
return cv.medianBlur(frame,5)
#3
def black_and_white_filter(frame):
return cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
#4
def vertical_mirror_filter(frame):
return cv.flip(frame,0)
#5
def horizontal_mirror_filter(frame):
return cv.flip(frame,1)
#6
def edge_detection(frame):
return cv.Canny(frame, 100, 200)
#7
def sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv.filter2D(frame, -1, kernel)
#8
def sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv.transform(frame, sepia_filter)
#9
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv.convertScaleAbs(frame, alpha=alpha, beta=beta)
#10
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv.transform(frame, fall_filter)
#11
def invert_filter(frame):
return cv.bitwise_not(frame)
# Resim Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image=None):
if input_image is not None:
frame = input_image
else:
cap = cv.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Web kameradan görüntü alınamadı"
#Seçime göre fonksiyonları çağırma
if filter_type == "Gaussian Blur":
return gaussian_blur_filter(frame)
elif filter_type == "Median Blur":
return median_blur_filter(frame)
elif filter_type == "Gray Scale":
return black_and_white_filter(frame)
elif filter_type == "Vertical Mirror":
return vertical_mirror_filter(frame)
elif filter_type == "Horizontal Mirror":
return horizontal_mirror_filter(frame)
elif filter_type == "Edge Detection":
return edge_detection(frame)
elif filter_type == "Sharpen":
return sharpening_filter(frame)
elif filter_type == "Sepia":
return sepia_filter(frame)
elif filter_type == "Brightness":
return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
elif filter_type == "Sonbahar":
return apply_fall_filter(frame)
elif filter_type == "Invert":
return invert_filter(frame)
#Gradio Arayüzü
with gr.Blocks() as demo:
gr.Markdown("# Fotoğraf Filtreleme")
# Filtre seçeneklerini dropboza tanımlama
filter_type = gr.Dropdown(
label="Lütfen Aşağıdan Filtre Seçiniz",
choices=["Gaussian Blur","Median Blur","Gray Scale","Vertical Mirror","Horizontal Mirror", "Edge Detection", "Sharpen", "Sepia", "Brightness", "Invert", "Sonbahar"],
value="Gaussian Blur"
)
# Görüntü yükleme alanı
input_image = gr.Image(label="Bir Fotoğraf Yükleyiniz", type="numpy")
# Çıktı için görüntü
output_image = gr.Image(label="Filtre Uygulama Alanı")
# Resim Filtre uygula butonu
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonunu çalıştırır.
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
#Resim yüklenince filtereyi otomatik uygular.
input_image.change(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
#dropdown değiştiğinde filtereyi otomatik uygular.
filter_type.change(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
# Gradio arayüzünü başlat
demo.launch() |