import fastai from fastai.vision.all import * import gradio as gr from PIL import Image learn = load_learner('model.pkl') categories = 'elliptical', 'irregular', 'spiral' def classify_img(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['elliptical.jpg', 'irregular.jpg', 'spiral.jpg'] for img in examples: img = Image.open(img) img = img.resize((192,192), Image.NEAREST) iface = gr.Interface(fn = classify_img, inputs = image, outputs = label, title = 'Galaxy Classifier', examples = examples) iface.launch()