joselobenitezg's picture
set tf32 matmul
5f51879
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
from config import SAPIENS_LITE_MODELS_PATH
def load_model(task, version):
try:
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
model = torch.jit.load(model_path)
model.eval()
model.to(device)
return model, device
except KeyError as e:
print(f"Error: Tarea o versión inválida. {e}")
return None, None
def preprocess_image(image, input_shape):
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
img = torch.from_numpy(img)
img = img[[2, 1, 0], ...].float()
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def post_process_depth(result, original_shape):
if result.dim() == 3:
result = result.unsqueeze(0)
elif result.dim() == 4:
pass
else:
raise ValueError(f"Unexpected result dimension: {result.dim()}")
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
depth_map = seg_logits.data.float().cpu().numpy()
if depth_map.ndim == 3 and depth_map.shape[0] == 1:
depth_map = depth_map.squeeze(0)
return depth_map
def visualize_depth(depth_map):
min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
depth_normalized = (depth_normalized * 255).astype(np.uint8)
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
return depth_colored
def calculate_surface_normal(depth_map):
kernel_size = 7
grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
z = np.full(grad_x.shape, -1)
normals = np.dstack((-grad_x, -grad_y, z))
normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
with np.errstate(divide="ignore", invalid="ignore"):
normals_normalized = normals / (normals_mag + 1e-5)
normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
return normal_from_depth
def process_image_or_video(input_data, task='depth', version='sapiens_0.3b'):
model, device = load_model(task, version)
if model is None or device is None:
return None
input_shape = (3, 1024, 768)
def process_frame(frame):
if isinstance(frame, Image.Image):
frame = np.array(frame)
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = preprocess_image(frame, input_shape)
with torch.no_grad():
result = model(img.to(device))
depth_map = post_process_depth(result, (frame.shape[0], frame.shape[1]))
depth_image = visualize_depth(depth_map)
return Image.fromarray(cv2.cvtColor(depth_image, cv2.COLOR_BGR2RGB))
if isinstance(input_data, np.ndarray): # Video frame
return process_frame(input_data)
elif isinstance(input_data, Image.Image): # Imagen
return process_frame(input_data)
else:
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.")
return None