Spaces:
Running
Running
joselobenitezg
commited on
add zero gpu
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
from inference.seg import process_image_or_video
|
7 |
from config import SAPIENS_LITE_MODELS_PATH
|
@@ -10,7 +12,8 @@ def update_model_choices(task):
|
|
10 |
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
|
11 |
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
|
12 |
|
13 |
-
|
|
|
14 |
if isinstance(input_image, np.ndarray):
|
15 |
input_image = Image.fromarray(input_image)
|
16 |
|
@@ -18,38 +21,86 @@ def gradio_wrapper(input_image, task, version):
|
|
18 |
|
19 |
return result
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with gr.Blocks() as demo:
|
22 |
-
gr.Markdown("# Sapiens Arena 🤸🏽♂️ - WIP devmode
|
23 |
with gr.Tabs():
|
24 |
with gr.TabItem('Image'):
|
25 |
with gr.Row():
|
26 |
with gr.Column():
|
27 |
input_image = gr.Image(label="Input Image", type="pil")
|
28 |
-
|
29 |
["seg", "pose", "depth", "normal"],
|
30 |
label="Task",
|
31 |
info="Choose the task to perform",
|
32 |
value="seg"
|
33 |
)
|
34 |
-
|
35 |
label="Model Version",
|
36 |
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
|
37 |
value="sapiens_0.3b",
|
38 |
)
|
39 |
with gr.Column():
|
40 |
result_image = gr.Image(label="Result")
|
41 |
-
|
42 |
|
43 |
with gr.TabItem('Video'):
|
44 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
-
fn=
|
50 |
-
inputs=[input_image,
|
51 |
outputs=[result_image],
|
52 |
)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if __name__ == "__main__":
|
55 |
-
demo.launch(share=
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import spaces
|
7 |
|
8 |
from inference.seg import process_image_or_video
|
9 |
from config import SAPIENS_LITE_MODELS_PATH
|
|
|
12 |
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
|
13 |
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
|
14 |
|
15 |
+
@spaces.GPU(duration=120)
|
16 |
+
def process_image(input_image, task, version):
|
17 |
if isinstance(input_image, np.ndarray):
|
18 |
input_image = Image.fromarray(input_image)
|
19 |
|
|
|
21 |
|
22 |
return result
|
23 |
|
24 |
+
def process_video(input_video, task, version):
|
25 |
+
cap = cv2.VideoCapture(input_video)
|
26 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
27 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
28 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
29 |
+
|
30 |
+
output_video = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
31 |
+
|
32 |
+
while cap.isOpened():
|
33 |
+
ret, frame = cap.read()
|
34 |
+
if not ret:
|
35 |
+
break
|
36 |
+
|
37 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
38 |
+
processed_frame = process_image_or_video(frame_rgb, task=task.lower(), version=version)
|
39 |
+
|
40 |
+
if processed_frame is not None:
|
41 |
+
processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
42 |
+
output_video.write(processed_frame_bgr)
|
43 |
+
|
44 |
+
cap.release()
|
45 |
+
output_video.release()
|
46 |
+
|
47 |
+
return 'output_video.mp4'
|
48 |
+
|
49 |
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("# Sapiens Arena 🤸🏽♂️ - WIP devmode")
|
51 |
with gr.Tabs():
|
52 |
with gr.TabItem('Image'):
|
53 |
with gr.Row():
|
54 |
with gr.Column():
|
55 |
input_image = gr.Image(label="Input Image", type="pil")
|
56 |
+
select_task_image = gr.Radio(
|
57 |
["seg", "pose", "depth", "normal"],
|
58 |
label="Task",
|
59 |
info="Choose the task to perform",
|
60 |
value="seg"
|
61 |
)
|
62 |
+
model_name_image = gr.Dropdown(
|
63 |
label="Model Version",
|
64 |
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
|
65 |
value="sapiens_0.3b",
|
66 |
)
|
67 |
with gr.Column():
|
68 |
result_image = gr.Image(label="Result")
|
69 |
+
run_button_image = gr.Button("Run")
|
70 |
|
71 |
with gr.TabItem('Video'):
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
input_video = gr.Video(label="Input Video")
|
75 |
+
select_task_video = gr.Radio(
|
76 |
+
["seg", "pose", "depth", "normal"],
|
77 |
+
label="Task",
|
78 |
+
info="Choose the task to perform",
|
79 |
+
value="seg"
|
80 |
+
)
|
81 |
+
model_name_video = gr.Dropdown(
|
82 |
+
label="Model Version",
|
83 |
+
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
|
84 |
+
value="sapiens_0.3b",
|
85 |
+
)
|
86 |
+
with gr.Column():
|
87 |
+
result_video = gr.Video(label="Result")
|
88 |
+
run_button_video = gr.Button("Run")
|
89 |
|
90 |
+
select_task_image.change(fn=update_model_choices, inputs=select_task_image, outputs=model_name_image)
|
91 |
+
select_task_video.change(fn=update_model_choices, inputs=select_task_video, outputs=model_name_video)
|
92 |
|
93 |
+
run_button_image.click(
|
94 |
+
fn=process_image,
|
95 |
+
inputs=[input_image, select_task_image, model_name_image],
|
96 |
outputs=[result_image],
|
97 |
)
|
98 |
|
99 |
+
run_button_video.click(
|
100 |
+
fn=process_video,
|
101 |
+
inputs=[input_video, select_task_video, model_name_video],
|
102 |
+
outputs=[result_video],
|
103 |
+
)
|
104 |
+
|
105 |
if __name__ == "__main__":
|
106 |
+
demo.launch(share=False)
|