boost-space-llm / app.py
filipsedivy's picture
Update app
eb8aef0
raw
history blame
2.22 kB
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from transformers import T5Tokenizer, T5ForConditionalGeneration
client = InferenceClient("google/flan-t5-large")
embeddings = SentenceTransformerEmbeddings(model_name="msmarco-distilbert-base-v4")
db = Chroma(persist_directory="embeddings", embedding_function=embeddings)
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
repetition_penalty,
):
matching_docs = db.similarity_search(message)
context = ""
current_length = 0
for i, doc in enumerate(matching_docs):
doc_text = f"Document {i + 1}:\n{doc.page_content}\n\n"
doc_length = len(doc_text.split())
context += doc_text
current_length += doc_length
prompt = (
f"You are an expert in summarizing and answering questions based on given documents. "
f"Please provide a detailed and well-explained answer to the following query in 4-6 sentences:\n\n"
f"Query: {message}\n\n"
f"Based on the following documents:\n{context}\n\n"
f"Answer:"
)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
outputs = model.generate(input_ids,
do_sample=True,
max_new_tokens=max_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=10, value=1.5, step=0.1, label="Repetition penalty"),
],
retry_btn=None,
undo_btn=None,
clear_btn=None,
)
if __name__ == "__main__":
demo.launch()