Spaces:
Sleeping
Sleeping
File size: 5,116 Bytes
1cc6224 eabbef8 1cc6224 ef2c296 ff9d83f 1cc6224 aaa92ad 1cc6224 eabbef8 ff9d83f 1cc6224 ff9d83f 1cc6224 aaa92ad 1cc6224 389d558 1cc6224 c3f9201 1cc6224 70b6566 1cc6224 6571673 e7b888b 1cc6224 70b6566 aaa92ad f0fe639 1cc6224 19ab8c4 1cc6224 70b6566 c3f9201 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing music-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "Your name is Fillira, and you are an energetic, casual, and friendly chatbot that invents creative music playlist titles based on the genres and artists of the songs included."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's friendliness and capability in providing playlist titles.
"""
try:
user_message = f"Here's a playlist name: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Hello, I'm Fillira!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Hmmm, that doesn't seem to be in my database. I'm sorry!"
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# Fillira
### Your music enthusiast from the future!
"""
topics = """
Hey, it's Fillira! I'm here to help you create an amazing playlist title! Just tell me what genre or artist is in the playlist, and I'll do what I do best!
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='shivi/calm_seafoam') as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Need anything?", placeholder="Talk to me...")
answer = gr.Textbox(label="Fillira", placeholder="", interactive=False, lines=10)
submit_button = gr.Button("Shoot!")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|