Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_chat import message | |
import openai | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import DeepLake | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
#load Embeddings | |
embeddings = OpenAIEmbeddings() | |
db = DeepLake(dataset_path="hub://shailfinaspirant/flowret-algorithm", read_only=True, embedding_function=embeddings) | |
retriever = db.as_retriever() | |
retriever.search_kwargs['distance_metric'] = 'cos' | |
retriever.search_kwargs['fetch_k'] = 100 | |
retriever.search_kwargs['maximal_marginal_relevance'] = True | |
retriever.search_kwargs['k'] = 10 | |
model = ChatOpenAI(model='gpt-3.5-turbo') # switch to 'gpt-4' with money | |
qa = RetrievalQA.from_llm(model, retriever=retriever) | |
# Return the result of the query | |
qa.run("What is the repository's name?") | |
st.title(f"Chat with GitHub Repository --> Flowret") | |
# Initialize the session state for placeholder messages. | |
if "generated" not in st.session_state: | |
st.session_state["generated"] = ["i am ready to help you with Flowret repo"] | |
if "past" not in st.session_state: | |
st.session_state["past"] = ["hello"] | |
# A field input to receive user queries | |
user_input = st.text_input("", key="input") | |
# Search the database and add the responses to state | |
if user_input: | |
output = qa.run(user_input) | |
st.session_state.past.append(user_input) | |
st.session_state.generated.append(output) | |
# Create the conversational UI using the previous states | |
if st.session_state["generated"]: | |
for i in range(len(st.session_state["generated"])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + "_user") | |
message(st.session_state["generated"][i], key=str(i)) | |