import streamlit as st from streamlit_chat import message import openai from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import DeepLake from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA #load Embeddings embeddings = OpenAIEmbeddings() db = DeepLake(dataset_path="hub://shailfinaspirant/flowret-algorithm", read_only=True, embedding_function=embeddings) retriever = db.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['fetch_k'] = 100 retriever.search_kwargs['maximal_marginal_relevance'] = True retriever.search_kwargs['k'] = 10 model = ChatOpenAI(model='gpt-3.5-turbo') # switch to 'gpt-4' with money qa = RetrievalQA.from_llm(model, retriever=retriever) # Return the result of the query qa.run("What is the repository's name?") st.title(f"Chat with GitHub Repository --> Flowret") # Initialize the session state for placeholder messages. if "generated" not in st.session_state: st.session_state["generated"] = ["i am ready to help you with Flowret repo"] if "past" not in st.session_state: st.session_state["past"] = ["hello"] # A field input to receive user queries user_input = st.text_input("", key="input") # Search the database and add the responses to state if user_input: output = qa.run(user_input) st.session_state.past.append(user_input) st.session_state.generated.append(output) # Create the conversational UI using the previous states if st.session_state["generated"]: for i in range(len(st.session_state["generated"])): message(st.session_state["past"][i], is_user=True, key=str(i) + "_user") message(st.session_state["generated"][i], key=str(i))