import streamlit as st import numpy as np from ultralytics import YOLO from PIL import Image import supervision as sv model = YOLO('best.pt') mask_annotator = sv.MaskAnnotator() box_annontator = sv.BoxAnnotator() st.title("Yolov8 Solar Panel Segmentation") uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"], accept_multiple_files=False) if uploaded_file is not None: image = Image.open(uploaded_file).convert('RGB') image_arr = np.array(image) result = model.predict(image)[0] # Use `image` because of RGB to BGR conversion detections = sv.Detections.from_ultralytics(result) labels = [ f"solar panel {confidence:0.2f}" for _, _, confidence, _, _ in detections ] annotated_image = mask_annotator.annotate(image_arr, detections) annotated_image = box_annontator.annotate(annotated_image, detections, labels=labels) st.image(annotated_image, caption='Uploaded Image.', use_column_width=True)