Spaces:
Sleeping
Sleeping
File size: 3,988 Bytes
f6b477c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from typing import List
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel
#************
#Variables globales
MARKDOWN = """
#SAM
"""
EXAMPLES = [
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog", 0.5],
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "coffee", 0.6],
]
MIN_AREA_THRESHOLD = 0.01
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
task = "mask-generation",
model = "facebook/sam-vit-large",
device = DEVICE
)
SEMITRANSPARENT_MASK_ANNOTATOR = sv.MaskAnnotator(
color = sv.Color.red(),
color_lookup = sv.ColorLookup.INDEX
)
SOLID_MASK_ANNOTATOR = sv.MaskAnnotator(
color = sv.Color.white(),
color_lookup = sv.ColorLookup.INDEX,
opacity = 1
)
#************
#funciones de trabajo
def run_sam(image_rgb_pil : Image.Image ) -> sv.Detections:
outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch = 32)
mask = np.array(outputs['masks'])
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
def reverse_mask_image(image: np.ndarray, mask: np.ndarray, gray_value=128):
gray_color = np.array([
gray_value,
gray_value,
gray_value
], dtype=np.uint8)
return np.where(mask[..., None], image, gray_color)
def filter_detections(image_rgb_pil: Image.Image, detections: sv.Detections) -> sv.Detections:
img_rgb_numpy = np.array(image_rgb_pil)
filtering_mask = []
for xyxy, mask in zip(detections.xyxy, detections.mask):
crop = sv.crop_image(
image = img_rgb_numpy,
xyxy =xyxy
)
mask_crop = sv.crop_image(
image=mask,
xyxy=xyxy
)
masked_crop = reverse_mask_image(
image=crop,
mask=mask_crop
)
filtering_mask = np.array(
filtering_mask
)
return detections[filtering_mask]
def inference (image_rgb_pil: Image.Image) -> List[Image.Image]:
width, height = image_rgb_pil.size
area = width * height
detections = run_sam(
image_rgb_pil
)
detections = detections[ detections.area /area > MIN_AREA_THRESHOLD ]
detections = filter_detections(
image_rgb_pil=image_rgb_pil,
detections=detections,
)
blank_image = Image.new("RGB", (width, height), "black")
return [
annotate(
image_rgb_pil=image_rgb_pil,
detections=detections,
annotator=SEMITRANSPARENT_MASK_ANNOTATOR),
annotate(
image_rgb_pil=blank_image,
detections=detections,
annotator=SOLID_MASK_ANNOTATOR)
]
#************
#GRADIO CONSTRUCTION
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr,Image(
image_mode = 'RGB',
type = 'pil',
height = 500
)
submit_button = gr.Button("Pruébalo!!!")
gallery = gr.Gallery(
label = "Result",
object_fit = "scale-down",
preview = True
)
with gr.Row():
gr.Examples(
examples = EXAMPLES,
fn = inference,
inputs = [
input_image,
prompt_text,
confidence_slider
],
outputs = [gallery],
cache_examples = True,
run_on_click = True
)
submit_button.click(
inference,
inputs = [
input_image,
prompt_text,
confidence_slider
],
outputs = gallery
)
demo.launch( debug = True, show_error = True ) |