Spaces:
Sleeping
Sleeping
File size: 1,559 Bytes
956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 f779052 e9f69f0 f779052 956bf58 63fd6b3 f779052 956bf58 63fd6b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from joblib import load
from skimage.transform import resize
from skimage.color import rgb2gray
import numpy as np
classifier = load('knn_classifier.joblib')
def predict_image(image):
if len(image.shape) == 3:
image = rgb2gray(image)
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento
image = (image * 255).astype(np.uint8)
#image = np.array(image, dtype = np.float64)
image = np.invert(image)
image = image.reshape(1,-1)
prediction = classifier.predict(image)
return prediction[0]
with gr.Blocks() as demo:
txt = gr.Textbox(label = "Input", lines =2)
txt_2 = gr.Textbox(label = "Input 2")
txt_3 = gr.Textbox(value = "", label = "Output")
btn = gr.Button(value = "submit")
btn.click(combine, inputs = [txt, txt_2]), outputs = [txt_3]
with gr.Row():
im = gr.Image()
im_2 = gr.Image()
btn = gr.Button(value = "Mirror image")
btn.click(mirror, inputs = [im], outputs = [im_2])
gr.Markdown("## Image Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "0.png")],
inputs=im,
outputs=im_2,
fn=mirror,
cache_examples=True,
)
imagenes_muestra =[
"knnExample/0.png"
"knnExample/5.png"
"knnExample/7.png"
]
iface = gr.Interface(
fn = predict_image,
inputs = gr.inputs.Image(type = "file", label = "Sube tu Imagen o Selecciona una de Ejemplo"),#"image",
outputs = "text",
examples = imagenes_muestra
)
iface.launch(debug=True) |