knnExample / app.py
fireedman's picture
Update app.py
387b1a3 verified
raw
history blame
961 Bytes
import gradio as gr
import os
from joblib import load
from skimage.transform import resize
from skimage.color import rgb2gray
import numpy as np
classifier = load('knn_classifier.joblib')
def predict_image(image):
if len(image.shape) == 3:
image = rgb2gray(image)
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento
image = (image * 255).astype(np.uint8)
#image = np.array(image, dtype = np.float64)
image = np.invert(image)
image = image.reshape(1,-1)
prediction = classifier.predict(image)
return prediction[0]
imagenes_muestra =[
[os.path.join(os.path.abspath(''), "0.png")],
[os.path.join(os.path.abspath(''), "5.png")],
[os.path.join(os.path.abspath(''), "7.png")],
]
iface = gr.Interface(
fn = predict_image,
#inputs = gr.Image(label = "Sube tu Imagen o Selecciona una de Ejemplo"),#"image",
outputs = "text",
examples = imagenes_muestra
)
iface.launch(debug=True)