import gradio as gr from joblib import load from skimage.transform import resize from skimage.color import rgb2gray import numpy as np classifier = load('knn_classifier.joblib') def predict_image(image): if len(image.shape) == 3: image = rgb2gray(image) image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento image = (image * 255).astype(np.uint8) #image = np.array(image, dtype = np.float64) image = np.invert(image) image = image.reshape(1,-1) prediction = classifier.predict(image) return prediction[0] with gr.Blocks() as demo: txt = gr.Textbox(label = "Input", lines =2) txt_2 = gr.Textbox(label = "Input 2") txt_3 = gr.Textbox(value = "", label = "Output") btn = gr.Button(value = "submit") btn.click(combine, inputs = [txt, txt_2]), outputs = [txt_3] with gr.Row(): im = gr.Image() im_2 = gr.Image() btn = gr.Button(value = "Mirror image") btn.click(mirror, inputs = [im], outputs = [im_2]) gr.Markdown("## Image Examples") gr.Examples( examples=[os.path.join(os.path.dirname(__file__), "0.png")], inputs=im, outputs=im_2, fn=mirror, cache_examples=True, ) imagenes_muestra =[ "knnExample/0.png" "knnExample/5.png" "knnExample/7.png" ] iface = gr.Interface( fn = predict_image, inputs = gr.inputs.Image(type = "file", label = "Sube tu Imagen o Selecciona una de Ejemplo"),#"image", outputs = "text", examples = imagenes_muestra ) iface.launch(debug=True)