|
import cv2 |
|
import matplotlib.pyplot as plt |
|
from super_image import EdsrModel, ImageLoader |
|
from PIL import Image |
|
def preprocess_image(image_path): |
|
img = cv2.imread(image_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
return img |
|
def show_image(img): |
|
plt.imshow(img, cmap='gray') |
|
plt.axis('off') |
|
plt.show() |
|
def save_processed_image(img): |
|
output_path = "processed_images/processed_image.jpg" |
|
cv2.imwrite(output_path, img) |
|
return output_path |
|
'''def createBoundingBox(img): |
|
ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT) |
|
n_boxes = len(ocr_data['level']) |
|
for i in range(n_boxes): |
|
if ocr_data['level'][i] == 3: |
|
(x, y, w, h) = (ocr_data['left'][i], ocr_data['top'][i], ocr_data['width'][i], ocr_data['height'][i]) |
|
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 5) |
|
plt.imshow(img, cmap='gray') |
|
plt.axis('off') |
|
plt.show() |
|
''' |
|
|
|
def super_resolution(img): |
|
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2) |
|
pil_img = Image.fromarray(img) |
|
inputs = ImageLoader.load_image(pil_img) |
|
preds = model(inputs) |
|
|
|
ImageLoader.save_image(preds, 'processed_images/processed_image.jpg') |
|
def process_image(image_path): |
|
img = preprocess_image(image_path) |
|
super_resolution(img) |
|
|
|
if __name__ == "__main__": |
|
image_path = "Projects/HandwritingOCR/captured_images/captured_image.jpg" |
|
process_image(image_path) |