import warnings from urllib3.exceptions import NotOpenSSLWarning warnings.filterwarnings("ignore", category=NotOpenSSLWarning) warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning, module='torch') warnings.filterwarnings("ignore", category=UserWarning, module='transformers') import os import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import matplotlib.pyplot as plt IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) #model_name = "5CD-AI/Vintern-1B-v2" model_name = "5CD-AI/Vintern-1B-v3_5" device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def truncate_tokens(tokens, max_length): if len(tokens) > max_length: tokens = tokens[:max_length] return tokens def OCRing(image_URL): test_image = image_URL pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).to(device) generation_config = dict(max_new_tokens=512, do_sample=False, num_beams=3, repetition_penalty=3.5) question = '\n Chỉ xuất ra kí tự có trong văn bản, không thêm bớt.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') return response try: model = AutoModel.from_pretrained( model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=False, ).eval().to(device) except: model = AutoModel.from_pretrained( model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).eval().to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) if __name__ == "__main__": test_image = "Projects/HandwritingOCR/captured_images/captured_image.jpg" pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).to(device) generation_config = dict(max_new_tokens=512, do_sample=False, num_beams=3, repetition_penalty=3.5) question = '\n Input: ảnh, Output: Chỉ xuất ra những kí tự có trong ảnh, không thêm bớt.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') #dùng dòng lệnh này trong terminal: export PYTORCH_ENABLE_MPS_FALLBACK=1