File size: 9,019 Bytes
4f6613a
1ff1eab
4f6613a
 
5bea296
 
4f6613a
 
 
 
1ff1eab
4f6613a
 
 
1ff1eab
4f6613a
 
 
 
d69caf0
1ff1eab
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bea296
 
 
 
 
 
 
 
 
 
 
4f6613a
 
 
1ff1eab
4f6613a
 
 
 
1ff1eab
4f6613a
 
 
 
 
 
 
 
1ff1eab
4f6613a
 
5bea296
4f6613a
 
1ff1eab
4f6613a
 
 
 
 
 
 
1ff1eab
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d147db
 
4f6613a
0d147db
4f6613a
 
0d147db
 
 
 
 
4f6613a
0d147db
 
4f6613a
 
 
 
 
 
 
1ff1eab
4f6613a
1ff1eab
 
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c46b88
 
 
 
 
 
 
4f6613a
 
 
 
 
 
 
 
 
 
 
 
d69caf0
4f6613a
 
 
 
 
 
f9b6bed
4f6613a
5bea296
 
0d147db
5bea296
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff1eab
4f6613a
 
 
 
 
 
13ea36f
4f6613a
 
 
f4fbddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import re
import gradio as gr
import numpy as np
import os
import io
import wave
import threading
import subprocess
import sys
import time

from huggingface_hub import snapshot_download
from tools.fish_e2e import FishE2EAgent, FishE2EEventType
from tools.schema import ServeMessage, ServeTextPart, ServeVQPart

# Download Weights
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/fish-speech-1.4", local_dir="./checkpoints/fish-speech-1.4")
snapshot_download(repo_id="fishaudio/fish-agent-v0.1-3b", local_dir="./checkpoints/fish-agent-v0.1-3b")
SYSTEM_PROMPT = 'You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user\'s speech, then answer it in the following format: "Question: [USER_SPEECH]\n\nResponse: [YOUR_RESPONSE]\n"。You are required to use the following voice in this conversation.'

class ChatState:
    def __init__(self):
        self.conversation = []
        self.added_systext = False
        self.added_sysaudio = False

    def get_history(self):
        results = []
        for msg in self.conversation:
            results.append({"role": msg.role, "content": self.repr_message(msg)})

        # Process assistant messages to extract questions and update user messages
        for i, msg in enumerate(results):
            if msg["role"] == "assistant":
                match = re.search(r"Question: (.*?)\n\nResponse:", msg["content"])
                if match and i > 0 and results[i - 1]["role"] == "user":
                    # Update previous user message with extracted question
                    results[i - 1]["content"] += "\n" + match.group(1)
                    # Remove the Question/Answer format from assistant message
                    msg["content"] = msg["content"].split("\n\nResponse: ", 1)[1]
        return results

    def repr_message(self, msg: ServeMessage):
        response = ""
        for part in msg.parts:
            if isinstance(part, ServeTextPart):
                response += part.text
            elif isinstance(part, ServeVQPart):
                response += f"<audio {len(part.codes[0]) / 21:.2f}s>"
        return response


def clear_fn():
    return [], ChatState(), None, None, None

def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes

async def process_audio_input(
    sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str
):
    if audio_input is None and not text_input:
        raise gr.Error("No input provided")

    agent = FishE2EAgent()  # Create new agent instance for each request

    # Convert audio input to numpy array
    if isinstance(audio_input, tuple):
        sr, audio_data = audio_input
    elif text_input:
        sr = 44100
        audio_data = None
    else:
        raise gr.Error("Invalid audio format")

    if isinstance(sys_audio_input, tuple):
        sr, sys_audio_data = sys_audio_input
    else:
        sr = 44100
        sys_audio_data = None

    def append_to_chat_ctx(
        part: ServeTextPart | ServeVQPart, role: str = "assistant"
    ) -> None:
        if not state.conversation or state.conversation[-1].role != role:
            state.conversation.append(ServeMessage(role=role, parts=[part]))
        else:
            state.conversation[-1].parts.append(part)

    if state.added_systext is False and sys_text_input:
        state.added_systext = True
        append_to_chat_ctx(ServeTextPart(text=sys_text_input), role="system")
    if text_input:
        append_to_chat_ctx(ServeTextPart(text=text_input), role="user")
        audio_data = None

    result_audio = b""
    async for event in agent.stream(
        sys_audio_data,
        audio_data,
        sr,
        1,
        chat_ctx={
            "messages": state.conversation,
            "added_sysaudio": state.added_sysaudio,
        },
    ):
        if event.type == FishE2EEventType.USER_CODES:
            append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user")
        elif event.type == FishE2EEventType.SPEECH_SEGMENT:
            result_audio += event.frame.data
            np_audio = np.frombuffer(result_audio, dtype=np.int16)
            append_to_chat_ctx(ServeVQPart(codes=event.vq_codes))
            yield state.get_history(), (44100, np_audio), None, None
        elif event.type == FishE2EEventType.TEXT_SEGMENT:
            append_to_chat_ctx(ServeTextPart(text=event.text))
            if result_audio:
                np_audio = np.frombuffer(result_audio, dtype=np.int16)
                yield state.get_history(), (44100, np_audio), None, None
            else:
                yield state.get_history(), None, None, None

    np_audio = np.frombuffer(result_audio, dtype=np.int16)
    yield state.get_history(), (44100, np_audio), None, None


async def process_text_input(
    sys_audio_input, sys_text_input, state: ChatState, text_input: str
):
    async for event in process_audio_input(
        sys_audio_input, sys_text_input, None, state, text_input
    ):
        yield event


def create_demo():
    with gr.Blocks() as demo:
        state = gr.State(ChatState())

        with gr.Row():
            # Left column (70%) for chatbot and notes
            with gr.Column(scale=7):
                chatbot = gr.Chatbot(
                    [],
                    elem_id="chatbot",
                    bubble_full_width=False,
                    height=600,
                    type="messages",
                )

                notes = gr.Markdown(
                    """
                # Fish Agent
                1. This demo is the Fish Audio self-developed end-to-end language model Fish Agent 3B version.
                2. You can find the code and weights in our official repository, but all related content is released under the CC BY-NC-SA 4.0 license.
                3. The demo is an early beta version, and inference speed is yet to be optimized.
                # Features
                1. This model automatically integrates ASR and TTS components, requiring no external models, making it truly end-to-end rather than a three-stage process (ASR+LLM+TTS).
                2. The model can use reference audio to control speaking voice.
                3. It can generate audio with strong emotions and prosody.
                """
                )

            # Right column (30%) for controls
            with gr.Column(scale=3):
                sys_audio_input = gr.Audio(
                    sources=["upload"],
                    type="numpy",
                    label="Give a timbre for your assistant",
                )
                sys_text_input = gr.Textbox(
                    label="What is your assistant's role?",
                    value=SYSTEM_PROMPT,
                    type="text",
                )
                audio_input = gr.Audio(
                    sources=["microphone"], type="numpy", label="Speak your message"
                )

                text_input = gr.Textbox(label="Or type your message", type="text",value="Can you give a brief introduction of yourself?")

                output_audio = gr.Audio(
                    label="Assistant's Voice", 
                    type="numpy",
                )

                send_button = gr.Button("Send", variant="primary")
                clear_button = gr.Button("Clear")

        # Event handlers
        audio_input.stop_recording(
            process_audio_input,
            inputs=[sys_audio_input, sys_text_input, audio_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        send_button.click(
            process_text_input,
            inputs=[sys_audio_input, sys_text_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        text_input.submit(
            process_text_input,
            inputs=[sys_audio_input, sys_text_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        clear_button.click(
            clear_fn,
            inputs=[],
            outputs=[chatbot, state, audio_input, output_audio, text_input],
        )

    return demo

def run_api():
    subprocess.run([sys.executable, "-m", "tools.api"])

if __name__ == "__main__":
    
    # 创建并启动 API 线程
    api_thread = threading.Thread(target=run_api, daemon=True)
    api_thread.start()

    # 给 API 一些时间启动
    time.sleep(90)

    # 创建并启动 Gradio demo
    demo = create_demo()
    demo.launch(share=True)