Spaces:
Running
on
A10G
Running
on
A10G
from pathlib import Path | |
import click | |
import hydra | |
import numpy as np | |
import soundfile as sf | |
import torch | |
import torchaudio | |
from hydra import compose, initialize | |
from hydra.utils import instantiate | |
from loguru import logger | |
from omegaconf import OmegaConf | |
from tools.file import AUDIO_EXTENSIONS | |
# register eval resolver | |
OmegaConf.register_new_resolver("eval", eval) | |
def load_model(config_name, checkpoint_path, device="cuda"): | |
hydra.core.global_hydra.GlobalHydra.instance().clear() | |
with initialize(version_base="1.3", config_path="../../fish_speech/configs"): | |
cfg = compose(config_name=config_name) | |
model = instantiate(cfg) | |
state_dict = torch.load( | |
checkpoint_path, | |
map_location=device, | |
) | |
if "state_dict" in state_dict: | |
state_dict = state_dict["state_dict"] | |
if any("generator" in k for k in state_dict): | |
state_dict = { | |
k.replace("generator.", ""): v | |
for k, v in state_dict.items() | |
if "generator." in k | |
} | |
result = model.load_state_dict(state_dict, strict=False) | |
model.eval() | |
model.to(device) | |
logger.info(f"Loaded model: {result}") | |
return model | |
def main(input_path, output_path, config_name, checkpoint_path, device): | |
model = load_model(config_name, checkpoint_path, device=device) | |
if input_path.suffix in AUDIO_EXTENSIONS: | |
logger.info(f"Processing in-place reconstruction of {input_path}") | |
# Load audio | |
audio, sr = torchaudio.load(str(input_path)) | |
if audio.shape[0] > 1: | |
audio = audio.mean(0, keepdim=True) | |
audio = torchaudio.functional.resample( | |
audio, sr, model.spec_transform.sample_rate | |
) | |
audios = audio[None].to(device) | |
logger.info( | |
f"Loaded audio with {audios.shape[2] / model.spec_transform.sample_rate:.2f} seconds" | |
) | |
# VQ Encoder | |
audio_lengths = torch.tensor([audios.shape[2]], device=device, dtype=torch.long) | |
indices = model.encode(audios, audio_lengths)[0][0] | |
logger.info(f"Generated indices of shape {indices.shape}") | |
# Save indices | |
np.save(output_path.with_suffix(".npy"), indices.cpu().numpy()) | |
elif input_path.suffix == ".npy": | |
logger.info(f"Processing precomputed indices from {input_path}") | |
indices = np.load(input_path) | |
indices = torch.from_numpy(indices).to(device).long() | |
assert indices.ndim == 2, f"Expected 2D indices, got {indices.ndim}" | |
else: | |
raise ValueError(f"Unknown input type: {input_path}") | |
# Restore | |
feature_lengths = torch.tensor([indices.shape[1]], device=device) | |
fake_audios, _ = model.decode( | |
indices=indices[None], feature_lengths=feature_lengths | |
) | |
audio_time = fake_audios.shape[-1] / model.spec_transform.sample_rate | |
logger.info( | |
f"Generated audio of shape {fake_audios.shape}, equivalent to {audio_time:.2f} seconds from {indices.shape[1]} features, features/second: {indices.shape[1] / audio_time:.2f}" | |
) | |
# Save audio | |
fake_audio = fake_audios[0, 0].float().cpu().numpy() | |
sf.write(output_path, fake_audio, model.spec_transform.sample_rate) | |
logger.info(f"Saved audio to {output_path}") | |
if __name__ == "__main__": | |
main() | |