Spaces:
Running
on
L4
Running
on
L4
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import copy | |
import json | |
import logging | |
import os.path | |
import random | |
import re | |
import string | |
import time | |
import numpy as np | |
import torch | |
from funasr.download.download_model_from_hub import download_model | |
from funasr.download.file import download_from_url | |
from funasr.register import tables | |
from funasr.train_utils.load_pretrained_model import load_pretrained_model | |
from funasr.train_utils.set_all_random_seed import set_all_random_seed | |
from funasr.utils import export_utils, misc | |
from funasr.utils.load_utils import load_audio_text_image_video, load_bytes | |
from funasr.utils.misc import deep_update | |
from funasr.utils.timestamp_tools import timestamp_sentence, timestamp_sentence_en | |
from tqdm import tqdm | |
from .vad_utils import merge_vad, slice_padding_audio_samples | |
try: | |
from funasr.models.campplus.cluster_backend import ClusterBackend | |
from funasr.models.campplus.utils import distribute_spk, postprocess, sv_chunk | |
except: | |
pass | |
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): | |
""" """ | |
data_list = [] | |
key_list = [] | |
filelist = [".scp", ".txt", ".json", ".jsonl", ".text"] | |
chars = string.ascii_letters + string.digits | |
if isinstance(data_in, str): | |
if data_in.startswith("http://") or data_in.startswith("https://"): # url | |
data_in = download_from_url(data_in) | |
if isinstance(data_in, str) and os.path.exists( | |
data_in | |
): # wav_path; filelist: wav.scp, file.jsonl;text.txt; | |
_, file_extension = os.path.splitext(data_in) | |
file_extension = file_extension.lower() | |
if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt; | |
with open(data_in, encoding="utf-8") as fin: | |
for line in fin: | |
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
if data_in.endswith( | |
".jsonl" | |
): # file.jsonl: json.dumps({"source": data}) | |
lines = json.loads(line.strip()) | |
data = lines["source"] | |
key = data["key"] if "key" in data else key | |
else: # filelist, wav.scp, text.txt: id \t data or data | |
lines = line.strip().split(maxsplit=1) | |
data = lines[1] if len(lines) > 1 else lines[0] | |
key = lines[0] if len(lines) > 1 else key | |
data_list.append(data) | |
key_list.append(key) | |
else: | |
if key is None: | |
# key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
key = misc.extract_filename_without_extension(data_in) | |
data_list = [data_in] | |
key_list = [key] | |
elif isinstance(data_in, (list, tuple)): | |
if data_type is not None and isinstance( | |
data_type, (list, tuple) | |
): # mutiple inputs | |
data_list_tmp = [] | |
for data_in_i, data_type_i in zip(data_in, data_type): | |
key_list, data_list_i = prepare_data_iterator( | |
data_in=data_in_i, data_type=data_type_i | |
) | |
data_list_tmp.append(data_list_i) | |
data_list = [] | |
for item in zip(*data_list_tmp): | |
data_list.append(item) | |
else: | |
# [audio sample point, fbank, text] | |
data_list = data_in | |
key_list = [] | |
for data_i in data_in: | |
if isinstance(data_i, str) and os.path.exists(data_i): | |
key = misc.extract_filename_without_extension(data_i) | |
else: | |
if key is None: | |
key = "rand_key_" + "".join( | |
random.choice(chars) for _ in range(13) | |
) | |
key_list.append(key) | |
else: # raw text; audio sample point, fbank; bytes | |
if isinstance(data_in, bytes): # audio bytes | |
data_in = load_bytes(data_in) | |
if key is None: | |
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
data_list = [data_in] | |
key_list = [key] | |
return key_list, data_list | |
class AutoModel: | |
def __init__(self, **kwargs): | |
try: | |
from funasr.utils.version_checker import check_for_update | |
print( | |
"Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel" | |
) | |
check_for_update(disable=kwargs.get("disable_update", False)) | |
except: | |
pass | |
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) | |
logging.basicConfig(level=log_level) | |
model, kwargs = self.build_model(**kwargs) | |
# if vad_model is not None, build vad model else None | |
vad_model = kwargs.get("vad_model", None) | |
vad_kwargs = ( | |
{} if kwargs.get("vad_kwargs", {}) is None else kwargs.get("vad_kwargs", {}) | |
) | |
if vad_model is not None: | |
logging.info("Building VAD model.") | |
vad_kwargs["model"] = vad_model | |
vad_kwargs["model_revision"] = kwargs.get("vad_model_revision", "master") | |
vad_kwargs["device"] = kwargs["device"] | |
vad_model, vad_kwargs = self.build_model(**vad_kwargs) | |
# if punc_model is not None, build punc model else None | |
punc_model = kwargs.get("punc_model", None) | |
punc_kwargs = ( | |
{} | |
if kwargs.get("punc_kwargs", {}) is None | |
else kwargs.get("punc_kwargs", {}) | |
) | |
if punc_model is not None: | |
logging.info("Building punc model.") | |
punc_kwargs["model"] = punc_model | |
punc_kwargs["model_revision"] = kwargs.get("punc_model_revision", "master") | |
punc_kwargs["device"] = kwargs["device"] | |
punc_model, punc_kwargs = self.build_model(**punc_kwargs) | |
# if spk_model is not None, build spk model else None | |
spk_model = kwargs.get("spk_model", None) | |
spk_kwargs = ( | |
{} if kwargs.get("spk_kwargs", {}) is None else kwargs.get("spk_kwargs", {}) | |
) | |
if spk_model is not None: | |
logging.info("Building SPK model.") | |
spk_kwargs["model"] = spk_model | |
spk_kwargs["model_revision"] = kwargs.get("spk_model_revision", "master") | |
spk_kwargs["device"] = kwargs["device"] | |
spk_model, spk_kwargs = self.build_model(**spk_kwargs) | |
self.cb_model = ClusterBackend().to(kwargs["device"]) | |
spk_mode = kwargs.get("spk_mode", "punc_segment") | |
if spk_mode not in ["default", "vad_segment", "punc_segment"]: | |
logging.error( | |
"spk_mode should be one of default, vad_segment and punc_segment." | |
) | |
self.spk_mode = spk_mode | |
self.kwargs = kwargs | |
self.model = model | |
self.vad_model = vad_model | |
self.vad_kwargs = vad_kwargs | |
self.punc_model = punc_model | |
self.punc_kwargs = punc_kwargs | |
self.spk_model = spk_model | |
self.spk_kwargs = spk_kwargs | |
self.model_path = kwargs.get("model_path") | |
def build_model(**kwargs): | |
assert "model" in kwargs | |
if "model_conf" not in kwargs: | |
logging.info( | |
"download models from model hub: {}".format(kwargs.get("hub", "ms")) | |
) | |
kwargs = download_model(**kwargs) | |
set_all_random_seed(kwargs.get("seed", 0)) | |
device = kwargs.get("device", "cuda") | |
if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0: | |
device = "cpu" | |
kwargs["batch_size"] = 1 | |
kwargs["device"] = device | |
torch.set_num_threads(kwargs.get("ncpu", 4)) | |
# build tokenizer | |
tokenizer = kwargs.get("tokenizer", None) | |
if tokenizer is not None: | |
tokenizer_class = tables.tokenizer_classes.get(tokenizer) | |
tokenizer = tokenizer_class(**kwargs.get("tokenizer_conf", {})) | |
kwargs["token_list"] = ( | |
tokenizer.token_list if hasattr(tokenizer, "token_list") else None | |
) | |
kwargs["token_list"] = ( | |
tokenizer.get_vocab() | |
if hasattr(tokenizer, "get_vocab") | |
else kwargs["token_list"] | |
) | |
vocab_size = ( | |
len(kwargs["token_list"]) if kwargs["token_list"] is not None else -1 | |
) | |
if vocab_size == -1 and hasattr(tokenizer, "get_vocab_size"): | |
vocab_size = tokenizer.get_vocab_size() | |
else: | |
vocab_size = -1 | |
kwargs["tokenizer"] = tokenizer | |
# build frontend | |
frontend = kwargs.get("frontend", None) | |
kwargs["input_size"] = None | |
if frontend is not None: | |
frontend_class = tables.frontend_classes.get(frontend) | |
frontend = frontend_class(**kwargs.get("frontend_conf", {})) | |
kwargs["input_size"] = ( | |
frontend.output_size() if hasattr(frontend, "output_size") else None | |
) | |
kwargs["frontend"] = frontend | |
# build model | |
model_class = tables.model_classes.get(kwargs["model"]) | |
assert model_class is not None, f'{kwargs["model"]} is not registered' | |
model_conf = {} | |
deep_update(model_conf, kwargs.get("model_conf", {})) | |
deep_update(model_conf, kwargs) | |
model = model_class(**model_conf, vocab_size=vocab_size) | |
# init_param | |
init_param = kwargs.get("init_param", None) | |
if init_param is not None: | |
if os.path.exists(init_param): | |
logging.info(f"Loading pretrained params from {init_param}") | |
load_pretrained_model( | |
model=model, | |
path=init_param, | |
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True), | |
oss_bucket=kwargs.get("oss_bucket", None), | |
scope_map=kwargs.get("scope_map", []), | |
excludes=kwargs.get("excludes", None), | |
) | |
else: | |
print(f"error, init_param does not exist!: {init_param}") | |
# fp16 | |
if kwargs.get("fp16", False): | |
model.to(torch.float16) | |
elif kwargs.get("bf16", False): | |
model.to(torch.bfloat16) | |
model.to(device) | |
if not kwargs.get("disable_log", True): | |
tables.print() | |
return model, kwargs | |
def __call__(self, *args, **cfg): | |
kwargs = self.kwargs | |
deep_update(kwargs, cfg) | |
res = self.model(*args, kwargs) | |
return res | |
def generate(self, input, input_len=None, **cfg): | |
if self.vad_model is None: | |
return self.inference(input, input_len=input_len, **cfg) | |
else: | |
return self.inference_with_vad(input, input_len=input_len, **cfg) | |
def inference( | |
self, input, input_len=None, model=None, kwargs=None, key=None, **cfg | |
): | |
kwargs = self.kwargs if kwargs is None else kwargs | |
if "cache" in kwargs: | |
kwargs.pop("cache") | |
deep_update(kwargs, cfg) | |
model = self.model if model is None else model | |
model.eval() | |
batch_size = kwargs.get("batch_size", 1) | |
# if kwargs.get("device", "cpu") == "cpu": | |
# batch_size = 1 | |
key_list, data_list = prepare_data_iterator( | |
input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key | |
) | |
speed_stats = {} | |
asr_result_list = [] | |
num_samples = len(data_list) | |
disable_pbar = self.kwargs.get("disable_pbar", False) | |
pbar = ( | |
tqdm(colour="blue", total=num_samples, dynamic_ncols=True) | |
if not disable_pbar | |
else None | |
) | |
time_speech_total = 0.0 | |
time_escape_total = 0.0 | |
for beg_idx in range(0, num_samples, batch_size): | |
end_idx = min(num_samples, beg_idx + batch_size) | |
data_batch = data_list[beg_idx:end_idx] | |
key_batch = key_list[beg_idx:end_idx] | |
batch = {"data_in": data_batch, "key": key_batch} | |
if (end_idx - beg_idx) == 1 and kwargs.get( | |
"data_type", None | |
) == "fbank": # fbank | |
batch["data_in"] = data_batch[0] | |
batch["data_lengths"] = input_len | |
time1 = time.perf_counter() | |
with torch.no_grad(): | |
res = model.inference(**batch, **kwargs) | |
if isinstance(res, (list, tuple)): | |
results = res[0] if len(res) > 0 else [{"text": ""}] | |
meta_data = res[1] if len(res) > 1 else {} | |
time2 = time.perf_counter() | |
asr_result_list.extend(results) | |
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() | |
batch_data_time = meta_data.get("batch_data_time", -1) | |
time_escape = time2 - time1 | |
speed_stats["load_data"] = meta_data.get("load_data", 0.0) | |
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) | |
speed_stats["forward"] = f"{time_escape:0.3f}" | |
speed_stats["batch_size"] = f"{len(results)}" | |
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" | |
description = f"{speed_stats}, " | |
if pbar: | |
pbar.update(end_idx - beg_idx) | |
pbar.set_description(description) | |
time_speech_total += batch_data_time | |
time_escape_total += time_escape | |
if pbar: | |
# pbar.update(1) | |
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") | |
torch.cuda.empty_cache() | |
return asr_result_list | |
def vad(self, input, input_len=None, **cfg): | |
kwargs = self.kwargs | |
# step.1: compute the vad model | |
deep_update(self.vad_kwargs, cfg) | |
beg_vad = time.time() | |
res = self.inference( | |
input, | |
input_len=input_len, | |
model=self.vad_model, | |
kwargs=self.vad_kwargs, | |
**cfg, | |
) | |
end_vad = time.time() | |
# FIX(gcf): concat the vad clips for sense vocie model for better aed | |
if cfg.get("merge_vad", False): | |
for i in range(len(res)): | |
res[i]["value"] = merge_vad( | |
res[i]["value"], kwargs.get("merge_length_s", 15) * 1000 | |
) | |
elapsed = end_vad - beg_vad | |
return elapsed, res | |
def inference_with_vadres(self, input, vad_res, input_len=None, **cfg): | |
kwargs = self.kwargs | |
# step.2 compute asr model | |
model = self.model | |
deep_update(kwargs, cfg) | |
batch_size = max(int(kwargs.get("batch_size_s", 300)) * 1000, 1) | |
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000 | |
kwargs["batch_size"] = batch_size | |
key_list, data_list = prepare_data_iterator( | |
input, input_len=input_len, data_type=kwargs.get("data_type", None) | |
) | |
results_ret_list = [] | |
time_speech_total_all_samples = 1e-6 | |
beg_total = time.time() | |
pbar_total = ( | |
tqdm(colour="red", total=len(vad_res), dynamic_ncols=True) | |
if not kwargs.get("disable_pbar", False) | |
else None | |
) | |
for i in range(len(vad_res)): | |
key = vad_res[i]["key"] | |
vadsegments = vad_res[i]["value"] | |
input_i = data_list[i] | |
fs = kwargs["frontend"].fs if hasattr(kwargs["frontend"], "fs") else 16000 | |
speech = load_audio_text_image_video( | |
input_i, fs=fs, audio_fs=kwargs.get("fs", 16000) | |
) | |
speech_lengths = len(speech) | |
n = len(vadsegments) | |
data_with_index = [(vadsegments[i], i) for i in range(n)] | |
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) | |
results_sorted = [] | |
if not len(sorted_data): | |
results_ret_list.append({"key": key, "text": "", "timestamp": []}) | |
logging.info("decoding, utt: {}, empty speech".format(key)) | |
continue | |
if len(sorted_data) > 0 and len(sorted_data[0]) > 0: | |
batch_size = max( | |
batch_size, sorted_data[0][0][1] - sorted_data[0][0][0] | |
) | |
if kwargs["device"] == "cpu": | |
batch_size = 0 | |
beg_idx = 0 | |
beg_asr_total = time.time() | |
time_speech_total_per_sample = speech_lengths / 16000 | |
time_speech_total_all_samples += time_speech_total_per_sample | |
# pbar_sample = tqdm(colour="blue", total=n, dynamic_ncols=True) | |
all_segments = [] | |
max_len_in_batch = 0 | |
end_idx = 1 | |
for j, _ in enumerate(range(0, n)): | |
# pbar_sample.update(1) | |
sample_length = sorted_data[j][0][1] - sorted_data[j][0][0] | |
potential_batch_length = max(max_len_in_batch, sample_length) * ( | |
j + 1 - beg_idx | |
) | |
# batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0] | |
if ( | |
j < n - 1 | |
and sample_length < batch_size_threshold_ms | |
and potential_batch_length < batch_size | |
): | |
max_len_in_batch = max(max_len_in_batch, sample_length) | |
end_idx += 1 | |
continue | |
speech_j, speech_lengths_j, intervals = slice_padding_audio_samples( | |
speech, speech_lengths, sorted_data[beg_idx:end_idx] | |
) | |
results = self.inference( | |
speech_j, input_len=None, model=model, kwargs=kwargs, **cfg | |
) | |
for _b in range(len(speech_j)): | |
results[_b]["interval"] = intervals[_b] | |
if self.spk_model is not None: | |
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] | |
for _b in range(len(speech_j)): | |
vad_segments = [ | |
[ | |
sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0, | |
sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0, | |
np.array(speech_j[_b]), | |
] | |
] | |
segments = sv_chunk(vad_segments) | |
all_segments.extend(segments) | |
speech_b = [i[2] for i in segments] | |
spk_res = self.inference( | |
speech_b, | |
input_len=None, | |
model=self.spk_model, | |
kwargs=kwargs, | |
**cfg, | |
) | |
results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"] | |
beg_idx = end_idx | |
end_idx += 1 | |
max_len_in_batch = sample_length | |
if len(results) < 1: | |
continue | |
results_sorted.extend(results) | |
# end_asr_total = time.time() | |
# time_escape_total_per_sample = end_asr_total - beg_asr_total | |
# pbar_sample.update(1) | |
# pbar_sample.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " | |
# f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " | |
# f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") | |
restored_data = [0] * n | |
for j in range(n): | |
index = sorted_data[j][1] | |
cur = results_sorted[j] | |
pattern = r"<\|([^|]+)\|>" | |
emotion_string = re.findall(pattern, cur["text"]) | |
cur["text"] = re.sub(pattern, "", cur["text"]) | |
cur["emo"] = "".join([f"<|{t}|>" for t in emotion_string]) | |
if self.punc_model is not None and len(cur["text"].strip()) > 0: | |
deep_update(self.punc_kwargs, cfg) | |
punc_res = self.inference( | |
cur["text"], | |
model=self.punc_model, | |
kwargs=self.punc_kwargs, | |
**cfg, | |
) | |
cur["text"] = punc_res[0]["text"] | |
restored_data[index] = cur | |
end_asr_total = time.time() | |
time_escape_total_per_sample = end_asr_total - beg_asr_total | |
if pbar_total: | |
pbar_total.update(1) | |
pbar_total.set_description( | |
f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " | |
f"time_speech: {time_speech_total_per_sample: 0.3f}, " | |
f"time_escape: {time_escape_total_per_sample:0.3f}" | |
) | |
# end_total = time.time() | |
# time_escape_total_all_samples = end_total - beg_total | |
# print(f"rtf_avg_all: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " | |
# f"time_speech_all: {time_speech_total_all_samples: 0.3f}, " | |
# f"time_escape_all: {time_escape_total_all_samples:0.3f}") | |
return restored_data | |
def export(self, input=None, **cfg): | |
""" | |
:param input: | |
:param type: | |
:param quantize: | |
:param fallback_num: | |
:param calib_num: | |
:param opset_version: | |
:param cfg: | |
:return: | |
""" | |
device = cfg.get("device", "cpu") | |
model = self.model.to(device=device) | |
kwargs = self.kwargs | |
deep_update(kwargs, cfg) | |
kwargs["device"] = device | |
del kwargs["model"] | |
model.eval() | |
type = kwargs.get("type", "onnx") | |
key_list, data_list = prepare_data_iterator( | |
input, input_len=None, data_type=kwargs.get("data_type", None), key=None | |
) | |
with torch.no_grad(): | |
export_dir = export_utils.export(model=model, data_in=data_list, **kwargs) | |
return export_dir | |