Spaces:
Running
on
L4
Running
on
L4
File size: 13,519 Bytes
a26769d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import math
import typing as tp
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from dac.nn.quantize import ResidualVectorQuantize
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left:end]
def get_extra_padding_for_conv1d(
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0
) -> int:
"""See `pad_for_conv1d`."""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad1d(
x: torch.Tensor,
paddings: tp.Tuple[int, int],
mode: str = "zeros",
value: float = 0.0,
):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right
before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == "reflect":
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
class CausalConvNet(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
dilation=1,
stride=1,
groups=1,
padding=None,
):
super(CausalConvNet, self).__init__()
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
)
self.stride = stride
self.kernel_size = (kernel_size - 1) * dilation + 1
self.dilation = dilation
self.padding = self.kernel_size - self.stride
def forward(self, x):
pad = self.padding
extra_padding = get_extra_padding_for_conv1d(
x, self.kernel_size, self.stride, pad
)
x = pad1d(x, (pad, extra_padding), mode="constant", value=0)
return self.conv(x).contiguous()
def weight_norm(self, name="weight", dim=0):
self.conv = weight_norm(self.conv, name=name, dim=dim)
return self
def remove_weight_norm(self):
self.conv = remove_parametrizations(self.conv)
return self
class CausalTransConvNet(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, dilation=1, stride=1, padding=None
):
super(CausalTransConvNet, self).__init__()
self.conv = nn.ConvTranspose1d(
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation
)
self.stride = stride
self.kernel_size = kernel_size
def forward(self, x):
x = self.conv(x)
pad = self.kernel_size - self.stride
padding_right = math.ceil(pad)
padding_left = pad - padding_right
x = unpad1d(x, (padding_left, padding_right))
return x.contiguous()
def weight_norm(self, name="weight", dim=0):
self.conv = weight_norm(self.conv, name=name, dim=dim)
return self
def remove_weight_norm(self):
self.conv = remove_parametrizations(self.conv)
return self
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
convnet_type = CausalConvNet
self.dwconv = convnet_type(
dim,
dim,
kernel_size=kernel_size,
# padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
dilation=dilation,
) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
if apply_residual:
x = input + x
return x
@dataclass
class VQResult:
z: torch.Tensor
codes: torch.Tensor
latents: torch.Tensor
codebook_loss: torch.Tensor
commitment_loss: torch.Tensor
semantic_distill_z: torch.Tensor | None = None
class DownsampleResidualVectorQuantize(nn.Module):
def __init__(
self,
input_dim: int = 1024,
n_codebooks: int = 9,
codebook_dim: int = 8,
quantizer_dropout: float = 0.5,
codebook_size: int = 1024,
semantic_codebook_size: int = 4096,
downsample_factor: tuple[int] = (2, 2),
downsample_dims: tuple[int] | None = None,
pre_module: nn.Module | None = None,
post_module: nn.Module | None = None,
semantic_predictor_module: nn.Module | None = None,
):
super().__init__()
if downsample_dims is None:
downsample_dims = [input_dim for _ in range(len(downsample_factor))]
all_dims = (input_dim,) + tuple(downsample_dims)
self.semantic_quantizer = ResidualVectorQuantize(
input_dim=input_dim,
n_codebooks=1,
codebook_size=semantic_codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=0.0,
)
self.quantizer = ResidualVectorQuantize(
input_dim=input_dim,
n_codebooks=n_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.downsample_factor = downsample_factor
self.downsample_dims = downsample_dims
convnet_type = CausalConvNet
transconvnet_type = CausalTransConvNet
self.downsample = nn.Sequential(
*[
nn.Sequential(
convnet_type(
all_dims[idx],
all_dims[idx + 1],
kernel_size=factor,
stride=factor,
),
ConvNeXtBlock(dim=all_dims[idx + 1]),
)
for idx, factor in enumerate(downsample_factor)
]
)
self.upsample = nn.Sequential(
*[
nn.Sequential(
transconvnet_type(
all_dims[idx + 1],
all_dims[idx],
kernel_size=factor,
stride=factor,
),
ConvNeXtBlock(dim=all_dims[idx]),
)
for idx, factor in reversed(list(enumerate(downsample_factor)))
]
)
self.apply(self._init_weights)
self.pre_module = (
pre_module if pre_module is not None else nn.Identity()
) # leave for transformer, LSTM or Mamba or something else
self.post_module = post_module if post_module is not None else nn.Identity()
self.semantic_predictor_module = (
semantic_predictor_module
if semantic_predictor_module is not None
else nn.Identity()
)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(
self, z, n_quantizers: int = None, semantic_len: torch.Tensor = None, **kwargs
):
# z: (B, D, T)
original_shape = z.shape
if semantic_len is None:
semantic_len = torch.LongTensor([z.shape[-1]])
z = self.downsample(z)
z = self.pre_module(z) # B, T, D
(
semantic_z,
semantic_codes,
semantic_latents,
semantic_commitment_loss,
semantic_codebook_loss,
) = self.semantic_quantizer(z)
residual_z = z - semantic_z
residual_z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
residual_z, n_quantizers=n_quantizers
)
z = semantic_z + residual_z
commitment_loss = commitment_loss + semantic_commitment_loss
codebook_loss = codebook_loss + semantic_codebook_loss
codes = torch.cat([semantic_codes, codes], dim=1)
latents = torch.cat([semantic_latents, latents], dim=1)
z = self.post_module(z)
z = self.upsample(z)
# z: (B, D, T)
# semantic distillation (disabled here since only used in training)
# semantic_distill_z = self.semantic_predictor_module(semantic_z, semantic_len).mT # wav2vec target is B, T, D
# Pad or crop z to match original shape
diff = original_shape[-1] - z.shape[-1]
right = 0
left = abs(diff) - right
if diff > 0:
z = F.pad(z, (left, right))
elif diff < 0:
z = z[..., left:]
results = VQResult(
z=z,
codes=codes,
latents=latents,
commitment_loss=commitment_loss,
codebook_loss=codebook_loss,
)
return results
# def encode(self, z):
# z = self.downsample(z)
# z = self.pre_module(z)
# _, indices, _, _, _ = self.quantizer(z.mT)
# indices = rearrange(indices, "g b l r -> b (g r) l")
# return indices
#
def decode(self, indices: torch.Tensor):
# indices = rearrange(indices, "b (g r) l -> g b l r", g=self.residual_fsq.groups)
# print(f"indices: {indices.shape}, semantic_quantizer.codebook_size: {self.semantic_quantizer.codebook_size}, quantizer.codebook_size: {self.quantizer.codebook_size}, semantic min: {indices[:, 0].min()}, max: {indices[:, 0].max()}, quantizer min: {indices[:, 1:].min()}, max: {indices[:, 1:].max()}")
new_indices = torch.zeros_like(indices)
new_indices[:, 0] = torch.clamp(
indices[:, 0], max=self.semantic_quantizer.codebook_size - 1
)
new_indices[:, 1:] = torch.clamp(
indices[:, 1:], max=self.quantizer.codebook_size - 1
)
z_q_semantic = self.semantic_quantizer.from_codes(new_indices[:, :1])[0]
z_q_residual = self.quantizer.from_codes(new_indices[:, 1:])[0]
z_q = z_q_semantic + z_q_residual
z_q = self.post_module(z_q)
z_q = self.upsample(z_q)
return z_q
# def from_latents(self, latents: torch.Tensor):
# z_q, z_p, codes = super().from_latents(latents)
# z_q = self.upsample(z_q)
# return z_q, z_p, codes
if __name__ == "__main__":
rvq = DownsampleResidualVectorQuantize(
input_dim=512,
n_codebooks=8,
codebook_dim=8,
codebook_size=1024,
quantizer_dropout=0.5,
downsample_factor=[2, 2],
)
rvq.eval()
x = torch.randn(2, 512, 442)
result = rvq(x)
print(rvq)
print(result.latents.shape, result.codes.shape, result.z.shape)
# y = rvq.from_codes(result.codes)
# print(y[0].shape)
# y = rvq.from_latents(
result1 = rvq(x[:, :, :40])
print(result1.latents.shape, result1.codes.shape, result1.z.shape)
assert torch.allclose(result.z[:, :, :40], result1.z, atol=1e-8)
print("Success")
|