Create models/can/can.py
Browse files- models/can/can.py +819 -0
models/can/can.py
ADDED
@@ -0,0 +1,819 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.models as models
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
"""Custom DenseNet Backbone"""
|
9 |
+
class DenseBlock(nn.Module):
|
10 |
+
"""
|
11 |
+
Basic DenseNet block
|
12 |
+
"""
|
13 |
+
def __init__(self, in_channels, growth_rate, num_layers):
|
14 |
+
super(DenseBlock, self).__init__()
|
15 |
+
self.layers = nn.ModuleList()
|
16 |
+
for i in range(num_layers):
|
17 |
+
self.layers.append(self._make_layer(in_channels + i * growth_rate, growth_rate))
|
18 |
+
|
19 |
+
def _make_layer(self, in_channels, growth_rate):
|
20 |
+
layer = nn.Sequential(
|
21 |
+
nn.BatchNorm2d(in_channels),
|
22 |
+
nn.ReLU(inplace=True),
|
23 |
+
nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, bias=False),
|
24 |
+
nn.BatchNorm2d(4 * growth_rate),
|
25 |
+
nn.ReLU(inplace=True),
|
26 |
+
nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
|
27 |
+
)
|
28 |
+
return layer
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
features = [x]
|
32 |
+
for layer in self.layers:
|
33 |
+
new_feature = layer(torch.cat(features, dim=1))
|
34 |
+
features.append(new_feature)
|
35 |
+
return torch.cat(features, dim=1)
|
36 |
+
|
37 |
+
|
38 |
+
class TransitionLayer(nn.Module):
|
39 |
+
"""
|
40 |
+
Transition layer between DenseBlocks
|
41 |
+
"""
|
42 |
+
def __init__(self, in_channels, out_channels):
|
43 |
+
super(TransitionLayer, self).__init__()
|
44 |
+
self.transition = nn.Sequential(
|
45 |
+
nn.BatchNorm2d(in_channels),
|
46 |
+
nn.ReLU(inplace=True),
|
47 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
48 |
+
nn.AvgPool2d(kernel_size=2, stride=2)
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return self.transition(x)
|
53 |
+
|
54 |
+
|
55 |
+
class DenseNetBackbone(nn.Module):
|
56 |
+
"""
|
57 |
+
DenseNet backbone for CAN
|
58 |
+
"""
|
59 |
+
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64):
|
60 |
+
super(DenseNetBackbone, self).__init__()
|
61 |
+
|
62 |
+
# Initial layer
|
63 |
+
self.features = nn.Sequential(
|
64 |
+
nn.Conv2d(1, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
|
65 |
+
nn.BatchNorm2d(num_init_features),
|
66 |
+
nn.ReLU(inplace=True),
|
67 |
+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
68 |
+
)
|
69 |
+
|
70 |
+
# DenseBlocks
|
71 |
+
num_features = num_init_features
|
72 |
+
for i, num_layers in enumerate(block_config):
|
73 |
+
block = DenseBlock(num_features, growth_rate, num_layers)
|
74 |
+
self.features.add_module(f'denseblock{i+1}', block)
|
75 |
+
num_features = num_features + growth_rate * num_layers
|
76 |
+
if i != len(block_config) - 1:
|
77 |
+
trans = TransitionLayer(num_features, num_features // 2)
|
78 |
+
self.features.add_module(f'transition{i+1}', trans)
|
79 |
+
num_features = num_features // 2
|
80 |
+
|
81 |
+
# Final processing
|
82 |
+
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
|
83 |
+
self.features.add_module('relu5', nn.ReLU(inplace=True))
|
84 |
+
|
85 |
+
self.out_channels = num_features # 684 (with default configuration)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
return self.features(x)
|
89 |
+
|
90 |
+
|
91 |
+
"""Pretrained DenseNet"""
|
92 |
+
class DenseNetFeatureExtractor(nn.Module):
|
93 |
+
def __init__(self, densenet_model, out_channels=684):
|
94 |
+
super().__init__()
|
95 |
+
# Change input conv to 1 channel
|
96 |
+
self.conv0 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
97 |
+
# Copy pretrained weights (average over RGB channels)
|
98 |
+
self.conv0.weight.data = densenet_model.features.conv0.weight.data.mean(dim=1, keepdim=True)
|
99 |
+
self.features = densenet_model.features
|
100 |
+
self.out_channels = out_channels
|
101 |
+
# Add a 1x1 conv to match your expected output channels if needed
|
102 |
+
self.final_conv = nn.Conv2d(1024, out_channels, kernel_size=1)
|
103 |
+
self.final_bn = nn.BatchNorm2d(out_channels)
|
104 |
+
self.final_relu = nn.ReLU(inplace=True)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
x = self.conv0(x)
|
108 |
+
x = self.features.norm0(x)
|
109 |
+
x = self.features.relu0(x)
|
110 |
+
x = self.features.pool0(x)
|
111 |
+
x = self.features.denseblock1(x)
|
112 |
+
x = self.features.transition1(x)
|
113 |
+
x = self.features.denseblock2(x)
|
114 |
+
x = self.features.transition2(x)
|
115 |
+
x = self.features.denseblock3(x)
|
116 |
+
x = self.features.transition3(x)
|
117 |
+
x = self.features.denseblock4(x)
|
118 |
+
x = self.features.norm5(x)
|
119 |
+
x = self.final_conv(x)
|
120 |
+
x = self.final_bn(x)
|
121 |
+
x = self.final_relu(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
"""Custom ResNet Backbone"""
|
126 |
+
class BasicBlock(nn.Module):
|
127 |
+
"""
|
128 |
+
Basic ResNet block
|
129 |
+
"""
|
130 |
+
expansion = 1
|
131 |
+
|
132 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
133 |
+
super(BasicBlock, self).__init__()
|
134 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
135 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
136 |
+
self.relu = nn.ReLU(inplace=True)
|
137 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
138 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
139 |
+
|
140 |
+
self.shortcut = nn.Sequential()
|
141 |
+
if stride != 1 or in_channels != out_channels * self.expansion:
|
142 |
+
self.shortcut = nn.Sequential(
|
143 |
+
nn.Conv2d(in_channels, out_channels * self.expansion, kernel_size=1, stride=stride, bias=False),
|
144 |
+
nn.BatchNorm2d(out_channels * self.expansion)
|
145 |
+
)
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
identity = x
|
149 |
+
|
150 |
+
out = self.conv1(x)
|
151 |
+
out = self.bn1(out)
|
152 |
+
out = self.relu(out)
|
153 |
+
|
154 |
+
out = self.conv2(out)
|
155 |
+
out = self.bn2(out)
|
156 |
+
|
157 |
+
out += self.shortcut(identity)
|
158 |
+
out = self.relu(out)
|
159 |
+
|
160 |
+
return out
|
161 |
+
|
162 |
+
|
163 |
+
class Bottleneck(nn.Module):
|
164 |
+
"""
|
165 |
+
Bottleneck ResNet block
|
166 |
+
"""
|
167 |
+
expansion = 4
|
168 |
+
|
169 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
170 |
+
super(Bottleneck, self).__init__()
|
171 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
172 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
173 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
174 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
175 |
+
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
|
176 |
+
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
|
177 |
+
self.relu = nn.ReLU(inplace=True)
|
178 |
+
|
179 |
+
self.shortcut = nn.Sequential()
|
180 |
+
if stride != 1 or in_channels != out_channels * self.expansion:
|
181 |
+
self.shortcut = nn.Sequential(
|
182 |
+
nn.Conv2d(in_channels, out_channels * self.expansion, kernel_size=1, stride=stride, bias=False),
|
183 |
+
nn.BatchNorm2d(out_channels * self.expansion)
|
184 |
+
)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
identity = x
|
188 |
+
|
189 |
+
out = self.conv1(x)
|
190 |
+
out = self.bn1(out)
|
191 |
+
out = self.relu(out)
|
192 |
+
|
193 |
+
out = self.conv2(out)
|
194 |
+
out = self.bn2(out)
|
195 |
+
out = self.relu(out)
|
196 |
+
|
197 |
+
out = self.conv3(out)
|
198 |
+
out = self.bn3(out)
|
199 |
+
|
200 |
+
out += self.shortcut(identity)
|
201 |
+
out = self.relu(out)
|
202 |
+
|
203 |
+
return out
|
204 |
+
|
205 |
+
|
206 |
+
class ResNetBackbone(nn.Module):
|
207 |
+
"""
|
208 |
+
ResNet backbone for CAN model, designed to output similar dimensions as DenseNet
|
209 |
+
"""
|
210 |
+
def __init__(self, block_type='bottleneck', layers=[3, 4, 6, 3], num_init_features=64):
|
211 |
+
super(ResNetBackbone, self).__init__()
|
212 |
+
|
213 |
+
# Initial layer
|
214 |
+
self.conv1 = nn.Conv2d(1, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)
|
215 |
+
self.bn1 = nn.BatchNorm2d(num_init_features)
|
216 |
+
self.relu = nn.ReLU(inplace=True)
|
217 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
218 |
+
|
219 |
+
# Define block type
|
220 |
+
if block_type == 'basic':
|
221 |
+
block = BasicBlock
|
222 |
+
expansion = 1
|
223 |
+
elif block_type == 'bottleneck':
|
224 |
+
block = Bottleneck
|
225 |
+
expansion = 4
|
226 |
+
else:
|
227 |
+
raise ValueError(f"Unknown block type: {block_type}")
|
228 |
+
|
229 |
+
# Create layers
|
230 |
+
self.layer1 = self._make_layer(block, num_init_features, 64, layers[0], stride=1)
|
231 |
+
self.layer2 = self._make_layer(block, 64 * expansion, 128, layers[1], stride=2)
|
232 |
+
self.layer3 = self._make_layer(block, 128 * expansion, 256, layers[2], stride=2)
|
233 |
+
self.layer4 = self._make_layer(block, 256 * expansion, 512, layers[3], stride=2)
|
234 |
+
|
235 |
+
# Final processing to match DenseNet output channels
|
236 |
+
self.final_conv = nn.Conv2d(512 * expansion, 684, kernel_size=1)
|
237 |
+
self.final_bn = nn.BatchNorm2d(684)
|
238 |
+
self.final_relu = nn.ReLU(inplace=True)
|
239 |
+
|
240 |
+
self.out_channels = 684 # Match DenseNet output channels
|
241 |
+
|
242 |
+
# Initialize weights
|
243 |
+
self._initialize_weights()
|
244 |
+
|
245 |
+
def _make_layer(self, block, in_channels, out_channels, num_blocks, stride):
|
246 |
+
layers = []
|
247 |
+
layers.append(block(in_channels, out_channels, stride))
|
248 |
+
for _ in range(1, num_blocks):
|
249 |
+
layers.append(block(out_channels * block.expansion, out_channels))
|
250 |
+
return nn.Sequential(*layers)
|
251 |
+
|
252 |
+
def _initialize_weights(self):
|
253 |
+
for m in self.modules():
|
254 |
+
if isinstance(m, nn.Conv2d):
|
255 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
256 |
+
elif isinstance(m, nn.BatchNorm2d):
|
257 |
+
nn.init.constant_(m.weight, 1)
|
258 |
+
nn.init.constant_(m.bias, 0)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
x = self.conv1(x)
|
262 |
+
x = self.bn1(x)
|
263 |
+
x = self.relu(x)
|
264 |
+
x = self.maxpool(x)
|
265 |
+
|
266 |
+
x = self.layer1(x)
|
267 |
+
x = self.layer2(x)
|
268 |
+
x = self.layer3(x)
|
269 |
+
x = self.layer4(x)
|
270 |
+
|
271 |
+
x = self.final_conv(x)
|
272 |
+
x = self.final_bn(x)
|
273 |
+
x = self.final_relu(x)
|
274 |
+
|
275 |
+
return x
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
"""Pretrained ResNet"""
|
280 |
+
class ResNetFeatureExtractor(nn.Module):
|
281 |
+
def __init__(self, resnet_model, out_channels=684):
|
282 |
+
super().__init__()
|
283 |
+
# Change input conv to 1 channel
|
284 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
285 |
+
self.conv1.weight.data = resnet_model.conv1.weight.data.sum(dim=1, keepdim=True) # average weights if needed
|
286 |
+
self.bn1 = resnet_model.bn1
|
287 |
+
self.relu = resnet_model.relu
|
288 |
+
self.maxpool = resnet_model.maxpool
|
289 |
+
self.layer1 = resnet_model.layer1
|
290 |
+
self.layer2 = resnet_model.layer2
|
291 |
+
self.layer3 = resnet_model.layer3
|
292 |
+
self.layer4 = resnet_model.layer4
|
293 |
+
# Add a 1x1 conv to match DenseNet output channels if needed
|
294 |
+
self.final_conv = nn.Conv2d(2048, out_channels, kernel_size=1)
|
295 |
+
self.final_bn = nn.BatchNorm2d(out_channels)
|
296 |
+
self.final_relu = nn.ReLU(inplace=True)
|
297 |
+
self.out_channels = out_channels
|
298 |
+
|
299 |
+
def forward(self, x):
|
300 |
+
x = self.conv1(x)
|
301 |
+
x = self.bn1(x)
|
302 |
+
x = self.relu(x)
|
303 |
+
x = self.maxpool(x)
|
304 |
+
x = self.layer1(x)
|
305 |
+
x = self.layer2(x)
|
306 |
+
x = self.layer3(x)
|
307 |
+
x = self.layer4(x)
|
308 |
+
x = self.final_conv(x)
|
309 |
+
x = self.final_bn(x)
|
310 |
+
x = self.final_relu(x)
|
311 |
+
return x
|
312 |
+
|
313 |
+
|
314 |
+
"""Channel Attention"""
|
315 |
+
class ChannelAttention(nn.Module):
|
316 |
+
"""
|
317 |
+
Channel-wise attention mechanism
|
318 |
+
"""
|
319 |
+
def __init__(self, in_channels, ratio=16):
|
320 |
+
super(ChannelAttention, self).__init__()
|
321 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
322 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
323 |
+
|
324 |
+
self.fc = nn.Sequential(
|
325 |
+
nn.Conv2d(in_channels, in_channels // ratio, kernel_size=1, bias=False),
|
326 |
+
nn.ReLU(inplace=True),
|
327 |
+
nn.Conv2d(in_channels // ratio, in_channels, kernel_size=1, bias=False)
|
328 |
+
)
|
329 |
+
self.sigmoid = nn.Sigmoid()
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
avg_out = self.fc(self.avg_pool(x))
|
333 |
+
max_out = self.fc(self.max_pool(x))
|
334 |
+
out = avg_out + max_out
|
335 |
+
return self.sigmoid(out)
|
336 |
+
|
337 |
+
|
338 |
+
"""Multi-scale Couting Module"""
|
339 |
+
class MSCM(nn.Module):
|
340 |
+
"""
|
341 |
+
Multi-Scale Counting Module
|
342 |
+
"""
|
343 |
+
def __init__(self, in_channels, num_classes):
|
344 |
+
super(MSCM, self).__init__()
|
345 |
+
|
346 |
+
# Branch 1: 3x3 kernel
|
347 |
+
self.branch1 = nn.Sequential(
|
348 |
+
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
|
349 |
+
nn.ReLU(inplace=True),
|
350 |
+
nn.Dropout2d(p=0.2)
|
351 |
+
)
|
352 |
+
self.attention1 = ChannelAttention(256)
|
353 |
+
|
354 |
+
# Branch 2: 5x5 kernel
|
355 |
+
self.branch2 = nn.Sequential(
|
356 |
+
nn.Conv2d(in_channels, 256, kernel_size=5, padding=2),
|
357 |
+
nn.ReLU(inplace=True),
|
358 |
+
nn.Dropout2d(p=0.2)
|
359 |
+
)
|
360 |
+
self.attention2 = ChannelAttention(256)
|
361 |
+
|
362 |
+
# 1x1 Conv layer to reduce channels and create counting map
|
363 |
+
self.conv_reduce = nn.Conv2d(512, num_classes, kernel_size=1)
|
364 |
+
self.sigmoid = nn.Sigmoid()
|
365 |
+
|
366 |
+
def forward(self, x):
|
367 |
+
# Process branch 1
|
368 |
+
out1 = self.branch1(x)
|
369 |
+
out1 = out1 * self.attention1(out1)
|
370 |
+
|
371 |
+
# Process branch 2
|
372 |
+
out2 = self.branch2(x)
|
373 |
+
out2 = out2 * self.attention2(out2)
|
374 |
+
|
375 |
+
# Concatenate features from both branches
|
376 |
+
concat_features = torch.cat([out1, out2], dim=1) # Shape: B x 512 x H x W
|
377 |
+
|
378 |
+
# Create counting map
|
379 |
+
count_map = self.sigmoid(self.conv_reduce(concat_features)) # Shape: B x C x H x W
|
380 |
+
|
381 |
+
# Apply sum-pooling to create 1D counting vector
|
382 |
+
# Sum over the entire feature map along height and width
|
383 |
+
count_vector = torch.sum(count_map, dim=(2, 3)) # Shape: B x C
|
384 |
+
|
385 |
+
return count_map, count_vector
|
386 |
+
|
387 |
+
|
388 |
+
"""Positional Encoding"""
|
389 |
+
class PositionalEncoding(nn.Module):
|
390 |
+
"""
|
391 |
+
Positional encoding for attention decoder
|
392 |
+
"""
|
393 |
+
def __init__(self, d_model, max_seq_len=1024):
|
394 |
+
super(PositionalEncoding, self).__init__()
|
395 |
+
self.d_model = d_model
|
396 |
+
|
397 |
+
# Create positional encoding matrix
|
398 |
+
pe = torch.zeros(max_seq_len, d_model)
|
399 |
+
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
|
400 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
401 |
+
|
402 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
403 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
404 |
+
self.register_buffer('pe', pe)
|
405 |
+
|
406 |
+
def forward(self, x):
|
407 |
+
# x shape: B x H x W x d_model
|
408 |
+
b, h, w, _ = x.shape
|
409 |
+
|
410 |
+
# Ensure we have enough positional encodings for the feature map size
|
411 |
+
if h*w > self.pe.size(0): #type: ignore
|
412 |
+
# Dynamically extend positional encodings if needed
|
413 |
+
device = self.pe.device
|
414 |
+
extended_pe = torch.zeros(h*w, self.d_model, device=device) #type: ignore
|
415 |
+
position = torch.arange(0, h*w, dtype=torch.float, device=device).unsqueeze(1) #type: ignore
|
416 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, device=device).float() * (-math.log(10000.0) / self.d_model)) #type: ignore
|
417 |
+
|
418 |
+
extended_pe[:, 0::2] = torch.sin(position * div_term)
|
419 |
+
extended_pe[:, 1::2] = torch.cos(position * div_term)
|
420 |
+
|
421 |
+
pos_encoding = extended_pe.view(h, w, -1)
|
422 |
+
else:
|
423 |
+
# Use pre-computed positional encodings
|
424 |
+
pos_encoding = self.pe[:h*w].view(h, w, -1) #type: ignore
|
425 |
+
|
426 |
+
pos_encoding = pos_encoding.unsqueeze(0).expand(b, -1, -1, -1) # B x H x W x d_model
|
427 |
+
return pos_encoding
|
428 |
+
|
429 |
+
|
430 |
+
"""Counting-combined Attentional Decoder"""
|
431 |
+
class CCAD(nn.Module):
|
432 |
+
"""
|
433 |
+
Counting-Combined Attentional Decoder
|
434 |
+
"""
|
435 |
+
def __init__(self, input_channels, hidden_size, embedding_dim, num_classes, use_coverage=True):
|
436 |
+
super(CCAD, self).__init__()
|
437 |
+
|
438 |
+
self.hidden_size = hidden_size
|
439 |
+
self.embedding_dim = embedding_dim
|
440 |
+
self.use_coverage = use_coverage
|
441 |
+
|
442 |
+
# Input layer to reduce feature map
|
443 |
+
self.feature_proj = nn.Conv2d(input_channels, hidden_size * 2, kernel_size=1)
|
444 |
+
|
445 |
+
# Positional encoding
|
446 |
+
self.pos_encoder = PositionalEncoding(hidden_size * 2)
|
447 |
+
|
448 |
+
# Embedding layer for output symbols
|
449 |
+
self.embedding = nn.Embedding(num_classes, embedding_dim)
|
450 |
+
|
451 |
+
# GRU cell
|
452 |
+
self.gru = nn.GRUCell(embedding_dim + hidden_size + num_classes, hidden_size)
|
453 |
+
|
454 |
+
# Attention
|
455 |
+
self.attention_w = nn.Linear(hidden_size * 2, hidden_size)
|
456 |
+
self.attention_v = nn.Linear(hidden_size, 1)
|
457 |
+
if use_coverage:
|
458 |
+
self.coverage_proj = nn.Linear(1, hidden_size)
|
459 |
+
|
460 |
+
# Output layer
|
461 |
+
self.out = nn.Linear(hidden_size + hidden_size + num_classes, num_classes)
|
462 |
+
self.dropout = nn.Dropout(p=0.3)
|
463 |
+
|
464 |
+
def forward(self, feature_map, count_vector, target=None, teacher_forcing_ratio=0.5, max_len=200):
|
465 |
+
batch_size = feature_map.size(0)
|
466 |
+
device = feature_map.device
|
467 |
+
|
468 |
+
# Transform feature map
|
469 |
+
projected_features = self.feature_proj(feature_map) # B x 2*hidden_size x H x W
|
470 |
+
H, W = projected_features.size(2), projected_features.size(3)
|
471 |
+
|
472 |
+
# Reshape feature map to B x H*W x 2*hidden_size
|
473 |
+
projected_features = projected_features.permute(0, 2, 3, 1).contiguous() # B x H x W x 2*hidden_size
|
474 |
+
|
475 |
+
# Add positional encoding
|
476 |
+
pos_encoding = self.pos_encoder(projected_features) # B x H x W x 2*hidden_size
|
477 |
+
projected_features = projected_features + pos_encoding
|
478 |
+
|
479 |
+
# Reshape for attention processing
|
480 |
+
projected_features = projected_features.view(batch_size, H*W, -1) # B x H*W x 2*hidden_size
|
481 |
+
|
482 |
+
# Initialize initial hidden state
|
483 |
+
h_t = torch.zeros(batch_size, self.hidden_size, device=device)
|
484 |
+
|
485 |
+
# Initialize coverage attention if used
|
486 |
+
if self.use_coverage:
|
487 |
+
coverage = torch.zeros(batch_size, H*W, 1, device=device)
|
488 |
+
|
489 |
+
# First <SOS> token
|
490 |
+
y_t_1 = torch.ones(batch_size, dtype=torch.long, device=device)
|
491 |
+
|
492 |
+
# Prepare target sequence if provided
|
493 |
+
if target is not None:
|
494 |
+
max_len = target.size(1)
|
495 |
+
|
496 |
+
# Array to store predictions
|
497 |
+
outputs = torch.zeros(batch_size, max_len, self.embedding.num_embeddings, device=device)
|
498 |
+
|
499 |
+
for t in range(max_len):
|
500 |
+
# Apply embedding to the previous symbol
|
501 |
+
embedded = self.embedding(y_t_1) # B x embedding_dim
|
502 |
+
|
503 |
+
# Compute attention
|
504 |
+
attention_input = self.attention_w(projected_features) # B x H*W x hidden_size
|
505 |
+
|
506 |
+
# Add coverage attention if used
|
507 |
+
if self.use_coverage:
|
508 |
+
coverage_input = self.coverage_proj(coverage.float()) #type: ignore
|
509 |
+
attention_input = attention_input + coverage_input
|
510 |
+
|
511 |
+
# Add hidden state to attention
|
512 |
+
h_expanded = h_t.unsqueeze(1).expand(-1, H*W, -1) # B x H*W x hidden_size
|
513 |
+
attention_input = torch.tanh(attention_input + h_expanded)
|
514 |
+
|
515 |
+
# Compute attention weights
|
516 |
+
e_t = self.attention_v(attention_input).squeeze(-1) # B x H*W
|
517 |
+
alpha_t = F.softmax(e_t, dim=1) # B x H*W
|
518 |
+
|
519 |
+
# Update coverage if used
|
520 |
+
if self.use_coverage:
|
521 |
+
coverage = coverage + alpha_t.unsqueeze(-1) #type: ignore
|
522 |
+
|
523 |
+
# Compute context vector
|
524 |
+
alpha_t = alpha_t.unsqueeze(1) # B x 1 x H*W
|
525 |
+
context = torch.bmm(alpha_t, projected_features).squeeze(1) # B x 2*hidden_size
|
526 |
+
context = context[:, :self.hidden_size] # Take the first half as context vector
|
527 |
+
|
528 |
+
# Combine embedding, context vector, and count vector
|
529 |
+
gru_input = torch.cat([embedded, context, count_vector], dim=1)
|
530 |
+
|
531 |
+
# Update hidden state
|
532 |
+
h_t = self.gru(gru_input, h_t)
|
533 |
+
|
534 |
+
# Predict output symbol
|
535 |
+
output = self.out(torch.cat([h_t, context, count_vector], dim=1))
|
536 |
+
outputs[:, t] = output
|
537 |
+
|
538 |
+
# Decide the next input symbol
|
539 |
+
if target is not None and torch.rand(1).item() < teacher_forcing_ratio:
|
540 |
+
y_t_1 = target[:, t]
|
541 |
+
else:
|
542 |
+
# Greedy decoding
|
543 |
+
_, y_t_1 = output.max(1)
|
544 |
+
|
545 |
+
return outputs
|
546 |
+
|
547 |
+
|
548 |
+
"""Full model CAN (Counting-Aware Network)"""
|
549 |
+
class CAN(nn.Module):
|
550 |
+
"""
|
551 |
+
Counting-Aware Network for handwritten mathematical expression recognition
|
552 |
+
"""
|
553 |
+
def __init__(self, num_classes, backbone=None, hidden_size=256, embedding_dim=256, use_coverage=True):
|
554 |
+
super(CAN, self).__init__()
|
555 |
+
|
556 |
+
# Backbone
|
557 |
+
if backbone is None:
|
558 |
+
self.backbone = DenseNetBackbone()
|
559 |
+
else:
|
560 |
+
self.backbone = backbone
|
561 |
+
backbone_channels = self.backbone.out_channels
|
562 |
+
|
563 |
+
# Multi-Scale Counting Module
|
564 |
+
self.mscm = MSCM(backbone_channels, num_classes)
|
565 |
+
|
566 |
+
# Counting-Combined Attentional Decoder
|
567 |
+
self.decoder = CCAD(
|
568 |
+
input_channels=backbone_channels,
|
569 |
+
hidden_size=hidden_size,
|
570 |
+
embedding_dim=embedding_dim,
|
571 |
+
num_classes=num_classes,
|
572 |
+
use_coverage=use_coverage
|
573 |
+
)
|
574 |
+
|
575 |
+
# Save parameters for later use
|
576 |
+
self.hidden_size = hidden_size
|
577 |
+
self.embedding_dim = embedding_dim
|
578 |
+
self.num_classes = num_classes
|
579 |
+
self.use_coverage = use_coverage
|
580 |
+
|
581 |
+
def init_hidden_state(self, visual_features):
|
582 |
+
"""
|
583 |
+
Initialize hidden state and cell state for LSTM
|
584 |
+
|
585 |
+
Args:
|
586 |
+
visual_features: Visual features from backbone
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
h, c: Initial hidden and cell states
|
590 |
+
"""
|
591 |
+
batch_size = visual_features.size(0)
|
592 |
+
device = visual_features.device
|
593 |
+
|
594 |
+
# Initialize hidden state with zeros
|
595 |
+
h = torch.zeros(1, batch_size, self.hidden_size, device=device)
|
596 |
+
c = torch.zeros(1, batch_size, self.hidden_size, device=device)
|
597 |
+
|
598 |
+
return h, c
|
599 |
+
|
600 |
+
def forward(self, x, target=None, teacher_forcing_ratio=0.5):
|
601 |
+
# Extract features from backbone
|
602 |
+
features = self.backbone(x)
|
603 |
+
|
604 |
+
# Compute count map and count vector from MSCM
|
605 |
+
count_map, count_vector = self.mscm(features)
|
606 |
+
|
607 |
+
# Decode with CCAD
|
608 |
+
outputs = self.decoder(features, count_vector, target, teacher_forcing_ratio)
|
609 |
+
|
610 |
+
return outputs, count_vector
|
611 |
+
|
612 |
+
def calculate_loss(self, outputs, targets, count_vectors, count_targets, lambda_count=0.01):
|
613 |
+
"""
|
614 |
+
Compute the combined loss function for CAN
|
615 |
+
|
616 |
+
Args:
|
617 |
+
outputs: Predicted output sequence from decoder
|
618 |
+
targets: Actual target sequence
|
619 |
+
count_vectors: Predicted count vector
|
620 |
+
count_targets: Actual target count vector
|
621 |
+
lambda_count: Weight for counting loss
|
622 |
+
|
623 |
+
Returns:
|
624 |
+
Total loss: L = L_cls + 位 * L_counting
|
625 |
+
"""
|
626 |
+
# Loss for decoder (cross entropy)
|
627 |
+
L_cls = F.cross_entropy(outputs.view(-1, outputs.size(-1)), targets.view(-1))
|
628 |
+
|
629 |
+
# Loss for counting (MSE)
|
630 |
+
L_counting = F.smooth_l1_loss(count_vectors / self.num_classes, count_targets / self.num_classes)
|
631 |
+
|
632 |
+
# Total loss
|
633 |
+
total_loss = L_cls + lambda_count * L_counting
|
634 |
+
|
635 |
+
return total_loss, L_cls, L_counting
|
636 |
+
|
637 |
+
def recognize(self, images, max_length=150, start_token=None, end_token=None, beam_width=5):
|
638 |
+
"""
|
639 |
+
Recognize the handwritten expression using beam search (batch_size=1 only).
|
640 |
+
|
641 |
+
Args:
|
642 |
+
images: Input image tensor, shape (1, channels, height, width)
|
643 |
+
max_length: Maximum length of the output sequence
|
644 |
+
start_token: Start token index
|
645 |
+
end_token: End token index
|
646 |
+
beam_width: Beam width for beam search
|
647 |
+
|
648 |
+
Returns:
|
649 |
+
best_sequence: List of token indices
|
650 |
+
attention_weights: List of attention weights for visualization
|
651 |
+
"""
|
652 |
+
if images.size(0) != 1:
|
653 |
+
raise ValueError("Beam search is implemented only for batch_size=1")
|
654 |
+
|
655 |
+
device = images.device
|
656 |
+
|
657 |
+
# Encode the image
|
658 |
+
visual_features = self.backbone(images)
|
659 |
+
|
660 |
+
# Get count vector
|
661 |
+
_, count_vector = self.mscm(visual_features)
|
662 |
+
|
663 |
+
# Prepare feature map for decoder
|
664 |
+
projected_features = self.decoder.feature_proj(visual_features) # (1, 2*hidden_size, H, W)
|
665 |
+
H, W = projected_features.size(2), projected_features.size(3)
|
666 |
+
projected_features = projected_features.permute(0, 2, 3, 1).contiguous() # (1, H, W, 2*hidden_size)
|
667 |
+
pos_encoding = self.decoder.pos_encoder(projected_features) # (1, H, W, 2*hidden_size)
|
668 |
+
projected_features = projected_features + pos_encoding # (1, H, W, 2*hidden_size)
|
669 |
+
projected_features = projected_features.view(1, H*W, -1) # (1, H*W, 2*hidden_size)
|
670 |
+
|
671 |
+
# Initialize beams
|
672 |
+
beam_sequences = [torch.tensor([start_token], device=device)] * beam_width # List of (seq_len) tensors
|
673 |
+
beam_scores = torch.zeros(beam_width, device=device) # (beam_width)
|
674 |
+
h_t = torch.zeros(beam_width, self.hidden_size, device=device) # (beam_width, hidden_size)
|
675 |
+
if self.use_coverage:
|
676 |
+
coverage = torch.zeros(beam_width, H*W, device=device) # (beam_width, H*W)
|
677 |
+
|
678 |
+
all_attention_weights = []
|
679 |
+
|
680 |
+
for step in range(max_length):
|
681 |
+
# Get current tokens for all beams
|
682 |
+
current_tokens = torch.tensor([seq[-1] for seq in beam_sequences], device=device) # (beam_width)
|
683 |
+
|
684 |
+
# Apply embedding
|
685 |
+
embedded = self.decoder.embedding(current_tokens) # (beam_width, embedding_dim)
|
686 |
+
|
687 |
+
# Compute attention for each beam
|
688 |
+
attention_input = self.decoder.attention_w(projected_features.expand(beam_width, -1, -1)) # (beam_width, H*W, hidden_size)
|
689 |
+
if self.use_coverage:
|
690 |
+
coverage_input = self.decoder.coverage_proj(coverage.unsqueeze(-1)) # (beam_width, H*W, hidden_size) #type: ignore
|
691 |
+
attention_input = attention_input + coverage_input
|
692 |
+
|
693 |
+
h_expanded = h_t.unsqueeze(1).expand(-1, H*W, -1) # (beam_width, H*W, hidden_size)
|
694 |
+
attention_input = torch.tanh(attention_input + h_expanded)
|
695 |
+
|
696 |
+
e_t = self.decoder.attention_v(attention_input).squeeze(-1) # (beam_width, H*W)
|
697 |
+
alpha_t = F.softmax(e_t, dim=1) # (beam_width, H*W)
|
698 |
+
|
699 |
+
all_attention_weights.append(alpha_t.detach())
|
700 |
+
|
701 |
+
if self.use_coverage:
|
702 |
+
coverage = coverage + alpha_t #type: ignore
|
703 |
+
|
704 |
+
context = torch.bmm(alpha_t.unsqueeze(1), projected_features.expand(beam_width, -1, -1)).squeeze(1) # (beam_width, 2*hidden_size)
|
705 |
+
context = context[:, :self.hidden_size] # (beam_width, hidden_size)
|
706 |
+
|
707 |
+
# Expand count_vector to (beam_width, num_classes)
|
708 |
+
count_vector_expanded = count_vector.expand(beam_width, -1) # (beam_width, num_classes)
|
709 |
+
|
710 |
+
gru_input = torch.cat([embedded, context, count_vector_expanded], dim=1) # (beam_width, embedding_dim + hidden_size + num_classes)
|
711 |
+
|
712 |
+
h_t = self.decoder.gru(gru_input, h_t) # (beam_width, hidden_size)
|
713 |
+
|
714 |
+
output = self.decoder.out(torch.cat([h_t, context, count_vector_expanded], dim=1)) # (beam_width, num_classes)
|
715 |
+
scores = F.log_softmax(output, dim=1) # (beam_width, num_classes)
|
716 |
+
|
717 |
+
# Compute new scores for all beam-token combinations
|
718 |
+
new_beam_scores = beam_scores.unsqueeze(1) + scores # (beam_width, num_classes)
|
719 |
+
new_beam_scores_flat = new_beam_scores.view(-1) # (beam_width * num_classes)
|
720 |
+
|
721 |
+
# Select top beam_width scores and indices
|
722 |
+
topk_scores, topk_indices = new_beam_scores_flat.topk(beam_width)
|
723 |
+
|
724 |
+
# Determine which beam and token each top score corresponds to
|
725 |
+
beam_indices = topk_indices // self.num_classes # (beam_width)
|
726 |
+
token_indices = topk_indices % self.num_classes # (beam_width)
|
727 |
+
|
728 |
+
# Create new beam sequences and states
|
729 |
+
new_beam_sequences = []
|
730 |
+
new_h_t = []
|
731 |
+
if self.use_coverage:
|
732 |
+
new_coverage = []
|
733 |
+
for i in range(beam_width):
|
734 |
+
prev_beam_idx = beam_indices[i].item()
|
735 |
+
token = token_indices[i].item()
|
736 |
+
new_seq = torch.cat([beam_sequences[prev_beam_idx], torch.tensor([token], device=device)]) #type: ignore
|
737 |
+
new_beam_sequences.append(new_seq)
|
738 |
+
new_h_t.append(h_t[prev_beam_idx])
|
739 |
+
if self.use_coverage:
|
740 |
+
new_coverage.append(coverage[prev_beam_idx]) #type: ignore
|
741 |
+
|
742 |
+
# Update beams
|
743 |
+
beam_sequences = new_beam_sequences
|
744 |
+
beam_scores = topk_scores
|
745 |
+
h_t = torch.stack(new_h_t)
|
746 |
+
if self.use_coverage:
|
747 |
+
coverage = torch.stack(new_coverage) #type: ignore
|
748 |
+
|
749 |
+
# Select the sequence with the highest score
|
750 |
+
best_idx = beam_scores.argmax()
|
751 |
+
best_sequence = beam_sequences[best_idx].tolist()
|
752 |
+
|
753 |
+
# Remove <start> and stop at <end>
|
754 |
+
if best_sequence[0] == start_token:
|
755 |
+
best_sequence = best_sequence[1:]
|
756 |
+
if end_token in best_sequence:
|
757 |
+
end_idx = best_sequence.index(end_token)
|
758 |
+
best_sequence = best_sequence[:end_idx]
|
759 |
+
|
760 |
+
return best_sequence, all_attention_weights
|
761 |
+
|
762 |
+
|
763 |
+
def create_can_model(num_classes, hidden_size=256, embedding_dim=256, use_coverage=True, pretrained_backbone=False, backbone_type='densenet'):
|
764 |
+
"""
|
765 |
+
Create CAN model with either DenseNet or ResNet backbone
|
766 |
+
|
767 |
+
Args:
|
768 |
+
num_classes: Number of symbol classes
|
769 |
+
pretrained_backbone: Whether to use a pretrained backbone
|
770 |
+
backbone_type: Type of backbone to use ('densenet' or 'resnet')
|
771 |
+
|
772 |
+
Returns:
|
773 |
+
CAN model
|
774 |
+
"""
|
775 |
+
# Create backbone
|
776 |
+
if backbone_type == 'densenet':
|
777 |
+
if pretrained_backbone:
|
778 |
+
densenet = models.densenet121(pretrained=True)
|
779 |
+
backbone = DenseNetFeatureExtractor(densenet, out_channels=684)
|
780 |
+
else:
|
781 |
+
backbone = DenseNetBackbone()
|
782 |
+
elif backbone_type == 'resnet':
|
783 |
+
if pretrained_backbone:
|
784 |
+
resnet = models.resnet50(pretrained=True)
|
785 |
+
backbone = ResNetFeatureExtractor(resnet, out_channels=684)
|
786 |
+
else:
|
787 |
+
backbone = ResNetBackbone(block_type='bottleneck', layers=[3, 4, 6, 3])
|
788 |
+
else:
|
789 |
+
raise ValueError(f"Unknown backbone type: {backbone_type}")
|
790 |
+
|
791 |
+
# Create model
|
792 |
+
model = CAN(
|
793 |
+
num_classes=num_classes,
|
794 |
+
backbone=backbone,
|
795 |
+
hidden_size=hidden_size,
|
796 |
+
embedding_dim=embedding_dim,
|
797 |
+
use_coverage=use_coverage
|
798 |
+
)
|
799 |
+
|
800 |
+
return model
|
801 |
+
|
802 |
+
|
803 |
+
# # Example usage
|
804 |
+
# if __name__ == "__main__":
|
805 |
+
# # Create CAN model with 101 symbol classes (example)
|
806 |
+
# num_classes = 101 # Number of symbol classes + special tokens like <SOS>, <EOS>
|
807 |
+
# model = create_can_model(num_classes)
|
808 |
+
|
809 |
+
# # Create dummy input data
|
810 |
+
# batch_size = 4
|
811 |
+
# input_image = torch.randn(batch_size, 1, 128, 384) # B x C x H x W
|
812 |
+
# target = torch.randint(0, num_classes, (batch_size, 50)) # B x max_len
|
813 |
+
|
814 |
+
# # Forward pass
|
815 |
+
# outputs, count_vectors = model(input_image, target)
|
816 |
+
|
817 |
+
# # Print output shapes
|
818 |
+
# print(f"Outputs shape: {outputs.shape}") # B x max_len x num_classes
|
819 |
+
# print(f"Count vectors shape: {count_vectors.shape}") # B x num_classes
|