Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +64 -0
- requirements.txt +7 -0
- scripts/convertor.py +63 -0
- scripts/main.py +73 -0
- scripts/td_abg.py +122 -0
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
from scripts.td_abg import get_foreground
|
6 |
+
from scripts.convertor import pil2cv
|
7 |
+
|
8 |
+
class webui:
|
9 |
+
def __init__(self):
|
10 |
+
self.demo = gr.Blocks()
|
11 |
+
|
12 |
+
def processing(self, input_image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L):
|
13 |
+
image = pil2cv(input_image)
|
14 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
15 |
+
mask, image = get_foreground(image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L)
|
16 |
+
return image, mask
|
17 |
+
|
18 |
+
def launch(self, share):
|
19 |
+
with self.demo:
|
20 |
+
with gr.Row():
|
21 |
+
with gr.Column():
|
22 |
+
input_image = gr.Image(type="pil")
|
23 |
+
with gr.Accordion("tile division ABG", open=True):
|
24 |
+
with gr.Box():
|
25 |
+
td_abg_enabled = gr.Checkbox(label="enabled", show_label=True)
|
26 |
+
h_split = gr.Slider(1, 2048, value=256, step=4, label="horizontal split num", show_label=True)
|
27 |
+
v_split = gr.Slider(1, 2048, value=256, step=4, label="vertical split num", show_label=True)
|
28 |
+
|
29 |
+
n_cluster = gr.Slider(1, 1000, value=500, step=10, label="cluster num", show_label=True)
|
30 |
+
alpha = gr.Slider(1, 255, value=100, step=1, label="alpha threshold", show_label=True)
|
31 |
+
th_rate = gr.Slider(0, 1, value=0.1, step=0.01, label="mask content ratio", show_label=True)
|
32 |
+
|
33 |
+
with gr.Accordion("cascadePSP", open=True):
|
34 |
+
with gr.Box():
|
35 |
+
cascadePSP_enabled = gr.Checkbox(label="enabled", show_label=True)
|
36 |
+
fast = gr.Checkbox(label="fast", show_label=True)
|
37 |
+
psp_L = gr.Slider(1, 2048, value=900, step=1, label="Memory usage", show_label=True)
|
38 |
+
|
39 |
+
submit = gr.Button(value="Submit")
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
with gr.Tab("output"):
|
43 |
+
output_img = gr.Image()
|
44 |
+
with gr.Tab("mask"):
|
45 |
+
output_mask = gr.Image()
|
46 |
+
submit.click(
|
47 |
+
self.processing,
|
48 |
+
inputs=[input_image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L],
|
49 |
+
outputs=[output_img, output_mask]
|
50 |
+
)
|
51 |
+
|
52 |
+
self.demo.queue()
|
53 |
+
self.demo.launch(share=share)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
ui = webui()
|
58 |
+
if len(sys.argv) > 1:
|
59 |
+
if sys.argv[1] == "share":
|
60 |
+
ui.launch(share=True)
|
61 |
+
else:
|
62 |
+
ui.launch(share=False)
|
63 |
+
else:
|
64 |
+
ui.launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
onnx
|
2 |
+
onnxruntime
|
3 |
+
opencv-python
|
4 |
+
numpy
|
5 |
+
pillow
|
6 |
+
segmentation-refinement
|
7 |
+
scikit-learn
|
scripts/convertor.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def rgb2df(img):
|
6 |
+
"""
|
7 |
+
Convert an RGB image to a DataFrame.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
img (np.ndarray): RGB image.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
df (pd.DataFrame): DataFrame containing the image data.
|
14 |
+
"""
|
15 |
+
h, w, _ = img.shape
|
16 |
+
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
17 |
+
r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
|
18 |
+
df = pd.DataFrame({
|
19 |
+
"x_l": x_l.ravel(),
|
20 |
+
"y_l": y_l.ravel(),
|
21 |
+
"r": r.ravel(),
|
22 |
+
"g": g.ravel(),
|
23 |
+
"b": b.ravel(),
|
24 |
+
})
|
25 |
+
return df
|
26 |
+
|
27 |
+
def df2rgba(img_df):
|
28 |
+
"""
|
29 |
+
Convert a DataFrame to an RGB image.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
img_df (pd.DataFrame): DataFrame containing image data.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
img (np.ndarray): RGB image.
|
36 |
+
"""
|
37 |
+
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
38 |
+
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
39 |
+
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
40 |
+
a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
|
41 |
+
df_img = np.stack([r_img, g_img, b_img, a_img], 2).astype(np.uint8)
|
42 |
+
return df_img
|
43 |
+
|
44 |
+
def pil2cv(image):
|
45 |
+
new_image = np.array(image, dtype=np.uint8)
|
46 |
+
if new_image.ndim == 2:
|
47 |
+
pass
|
48 |
+
elif new_image.shape[2] == 3:
|
49 |
+
new_image = new_image[:, :, ::-1]
|
50 |
+
elif new_image.shape[2] == 4:
|
51 |
+
new_image = new_image[:, :, [2, 1, 0, 3]]
|
52 |
+
return new_image
|
53 |
+
|
54 |
+
def cv2pil(image):
|
55 |
+
new_image = image.copy()
|
56 |
+
if new_image.ndim == 2:
|
57 |
+
pass
|
58 |
+
elif new_image.shape[2] == 3:
|
59 |
+
new_image = new_image[:, :, ::-1]
|
60 |
+
elif new_image.shape[2] == 4:
|
61 |
+
new_image = new_image[:, :, [2, 1, 0, 3]]
|
62 |
+
new_image = Image.fromarray(new_image)
|
63 |
+
return new_image
|
scripts/main.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
import modules.scripts as scripts
|
10 |
+
from modules import script_callbacks
|
11 |
+
|
12 |
+
from scripts.td_abg import get_foreground
|
13 |
+
from scripts.convertor import pil2cv
|
14 |
+
|
15 |
+
|
16 |
+
def processing(input_image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L):
|
17 |
+
image = pil2cv(input_image)
|
18 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
19 |
+
mask, image = get_foreground(image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L)
|
20 |
+
return image, mask
|
21 |
+
|
22 |
+
class Script(scripts.Script):
|
23 |
+
def __init__(self) -> None:
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
def title(self):
|
27 |
+
return "PBRemTools"
|
28 |
+
|
29 |
+
def show(self, is_img2img):
|
30 |
+
return scripts.AlwaysVisible
|
31 |
+
|
32 |
+
def ui(self, is_img2img):
|
33 |
+
return ()
|
34 |
+
|
35 |
+
def on_ui_tabs():
|
36 |
+
with gr.Blocks(analytics_enabled=False) as PBRemTools:
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column():
|
39 |
+
input_image = gr.Image(type="pil")
|
40 |
+
with gr.Accordion("tile division BG Remover", open=True):
|
41 |
+
with gr.Box():
|
42 |
+
td_abg_enabled = gr.Checkbox(label="enabled", show_label=True)
|
43 |
+
h_split = gr.Slider(1, 2048, value=256, step=4, label="horizontal split num", show_label=True)
|
44 |
+
v_split = gr.Slider(1, 2048, value=256, step=4, label="vertical split num", show_label=True)
|
45 |
+
|
46 |
+
n_cluster = gr.Slider(1, 1000, value=500, step=10, label="cluster num", show_label=True)
|
47 |
+
alpha = gr.Slider(1, 255, value=50, step=1, label="alpha threshold", show_label=True)
|
48 |
+
th_rate = gr.Slider(0, 1, value=0.1, step=0.01, label="mask content ratio", show_label=True)
|
49 |
+
|
50 |
+
with gr.Accordion("cascadePSP", open=True):
|
51 |
+
with gr.Box():
|
52 |
+
cascadePSP_enabled = gr.Checkbox(label="enabled", show_label=True)
|
53 |
+
fast = gr.Checkbox(label="fast", show_label=True)
|
54 |
+
psp_L = gr.Slider(1, 2048, value=900, step=1, label="Memory usage", show_label=True)
|
55 |
+
|
56 |
+
submit = gr.Button(value="Submit")
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
with gr.Tab("output"):
|
60 |
+
output_img = gr.Image()
|
61 |
+
with gr.Tab("mask"):
|
62 |
+
output_mask = gr.Image()
|
63 |
+
#dummy_component = gr.Label(visible=False)
|
64 |
+
#preset = gr.Text(visible=False)
|
65 |
+
submit.click(
|
66 |
+
processing,
|
67 |
+
inputs=[input_image, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L],
|
68 |
+
outputs=[output_img, output_mask]
|
69 |
+
)
|
70 |
+
|
71 |
+
return [(PBRemTools, "PBRemTools", "pbremtools")]
|
72 |
+
|
73 |
+
script_callbacks.on_ui_tabs(on_ui_tabs)
|
scripts/td_abg.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.cluster import KMeans, MiniBatchKMeans
|
6 |
+
|
7 |
+
from scripts.convertor import rgb2df, df2rgba
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import huggingface_hub
|
11 |
+
import onnxruntime as rt
|
12 |
+
import copy
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import segmentation_refinement as refine
|
16 |
+
|
17 |
+
|
18 |
+
# Declare Execution Providers
|
19 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
20 |
+
|
21 |
+
# Download and host the model
|
22 |
+
model_path = huggingface_hub.hf_hub_download(
|
23 |
+
"skytnt/anime-seg", "isnetis.onnx")
|
24 |
+
rmbg_model = rt.InferenceSession(model_path, providers=providers)
|
25 |
+
|
26 |
+
def get_mask(img, s=1024):
|
27 |
+
img = (img / 255).astype(np.float32)
|
28 |
+
dim = img.shape[2]
|
29 |
+
if dim == 4:
|
30 |
+
img = img[..., :3]
|
31 |
+
dim = 3
|
32 |
+
h, w = h0, w0 = img.shape[:-1]
|
33 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
34 |
+
ph, pw = s - h, s - w
|
35 |
+
img_input = np.zeros([s, s, dim], dtype=np.float32)
|
36 |
+
img_input[ph // 2:ph // 2 + h, pw //
|
37 |
+
2:pw // 2 + w] = cv2.resize(img, (w, h))
|
38 |
+
img_input = np.transpose(img_input, (2, 0, 1))
|
39 |
+
img_input = img_input[np.newaxis, :]
|
40 |
+
mask = rmbg_model.run(None, {'img': img_input})[0][0]
|
41 |
+
mask = np.transpose(mask, (1, 2, 0))
|
42 |
+
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
43 |
+
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis]
|
44 |
+
return mask
|
45 |
+
|
46 |
+
def assign_tile(row, tile_width, tile_height):
|
47 |
+
tile_x = row['x_l'] // tile_width
|
48 |
+
tile_y = row['y_l'] // tile_height
|
49 |
+
return f"tile_{tile_y}_{tile_x}"
|
50 |
+
|
51 |
+
def rmbg_fn(img):
|
52 |
+
mask = get_mask(img)
|
53 |
+
img = (mask * img + 255 * (1 - mask)).astype(np.uint8)
|
54 |
+
mask = (mask * 255).astype(np.uint8)
|
55 |
+
img = np.concatenate([img, mask], axis=2, dtype=np.uint8)
|
56 |
+
mask = mask.repeat(3, axis=2)
|
57 |
+
return mask, img
|
58 |
+
|
59 |
+
def refinement(img, mask, fast, psp_L):
|
60 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
61 |
+
refiner = refine.Refiner(device='cuda:0') # device can also be 'cpu'
|
62 |
+
|
63 |
+
# Fast - Global step only.
|
64 |
+
# Smaller L -> Less memory usage; faster in fast mode.
|
65 |
+
mask = refiner.refine(img, mask, fast=fast, L=psp_L)
|
66 |
+
|
67 |
+
return mask
|
68 |
+
|
69 |
+
|
70 |
+
def get_foreground(img, td_abg_enabled, h_split, v_split, n_cluster, alpha, th_rate, cascadePSP_enabled, fast, psp_L):
|
71 |
+
if td_abg_enabled == True:
|
72 |
+
mask = get_mask(img)
|
73 |
+
mask = (mask * 255).astype(np.uint8)
|
74 |
+
mask = mask.repeat(3, axis=2)
|
75 |
+
if cascadePSP_enabled == True:
|
76 |
+
mask = refinement(img, mask, fast, psp_L)
|
77 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
|
78 |
+
df = rgb2df(img)
|
79 |
+
|
80 |
+
image_width = img.shape[1]
|
81 |
+
image_height = img.shape[0]
|
82 |
+
|
83 |
+
num_horizontal_splits = h_split
|
84 |
+
num_vertical_splits = v_split
|
85 |
+
tile_width = image_width // num_horizontal_splits
|
86 |
+
tile_height = image_height // num_vertical_splits
|
87 |
+
|
88 |
+
df['tile'] = df.apply(assign_tile, args=(tile_width, tile_height), axis=1)
|
89 |
+
|
90 |
+
cls = MiniBatchKMeans(n_clusters=n_cluster, batch_size=100)
|
91 |
+
cls.fit(df[["r","g","b"]])
|
92 |
+
df["label"] = cls.labels_
|
93 |
+
|
94 |
+
mask_df = rgb2df(mask)
|
95 |
+
mask_df['bg_label'] = (mask_df['r'] > alpha) & (mask_df['g'] > alpha) & (mask_df['b'] > alpha)
|
96 |
+
|
97 |
+
img_df = df.copy()
|
98 |
+
img_df["bg_label"] = mask_df["bg_label"]
|
99 |
+
img_df["label"] = img_df["label"].astype(str) + "-" + img_df["tile"]
|
100 |
+
bg_rate = img_df.groupby("label").sum()["bg_label"]/img_df.groupby("label").count()["bg_label"]
|
101 |
+
img_df['bg_cls'] = (img_df['label'].isin(bg_rate[bg_rate > th_rate].index)).astype(int)
|
102 |
+
img_df.loc[img_df['bg_cls'] == 0, ['a']] = 0
|
103 |
+
img_df.loc[img_df['bg_cls'] != 0, ['a']] = 255
|
104 |
+
img = df2rgba(img_df)
|
105 |
+
|
106 |
+
if cascadePSP_enabled == True and td_abg_enabled == False:
|
107 |
+
mask = get_mask(img)
|
108 |
+
mask = (mask * 255).astype(np.uint8)
|
109 |
+
refiner = refine.Refiner(device='cuda:0')
|
110 |
+
mask = refiner.refine(img, mask, fast=fast, L=psp_L)
|
111 |
+
img = np.dstack((img, mask))
|
112 |
+
|
113 |
+
if cascadePSP_enabled == False and td_abg_enabled == False:
|
114 |
+
mask, img = rmbg_fn(img)
|
115 |
+
|
116 |
+
return mask, img
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|