File size: 7,454 Bytes
aaa2047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
Fmix paper from arxiv: https://arxiv.org/abs/2002.12047
Fmix code from github : https://github.com/ecs-vlc/FMix
'''
import math
import random
import numpy as np
from scipy.stats import beta


def fftfreqnd(h, w=None, z=None):
    """ Get bin values for discrete fourier transform of size (h, w, z)
    :param h: Required, first dimension size
    :param w: Optional, second dimension size
    :param z: Optional, third dimension size
    """
    fz = fx = 0
    fy = np.fft.fftfreq(h)

    if w is not None:
        fy = np.expand_dims(fy, -1)

        if w % 2 == 1:
            fx = np.fft.fftfreq(w)[: w // 2 + 2]
        else:
            fx = np.fft.fftfreq(w)[: w // 2 + 1]

    if z is not None:
        fy = np.expand_dims(fy, -1)
        if z % 2 == 1:
            fz = np.fft.fftfreq(z)[:, None]
        else:
            fz = np.fft.fftfreq(z)[:, None]

    return np.sqrt(fx * fx + fy * fy + fz * fz)


def get_spectrum(freqs, decay_power, ch, h, w=0, z=0):
    """ Samples a fourier image with given size and frequencies decayed by decay power
    :param freqs: Bin values for the discrete fourier transform
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param ch: Number of channels for the resulting mask
    :param h: Required, first dimension size
    :param w: Optional, second dimension size
    :param z: Optional, third dimension size
    """
    scale = np.ones(1) / (np.maximum(freqs, np.array([1. / max(w, h, z)])) ** decay_power)

    param_size = [ch] + list(freqs.shape) + [2]
    param = np.random.randn(*param_size)

    scale = np.expand_dims(scale, -1)[None, :]

    return scale * param


def make_low_freq_image(decay, shape, ch=1):
    """ Sample a low frequency image from fourier space
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param ch: Number of channels for desired mask
    """
    freqs = fftfreqnd(*shape)
    spectrum = get_spectrum(freqs, decay, ch, *shape)#.reshape((1, *shape[:-1], -1))
    spectrum = spectrum[:, 0] + 1j * spectrum[:, 1]
    mask = np.real(np.fft.irfftn(spectrum, shape))

    if len(shape) == 1:
        mask = mask[:1, :shape[0]]
    if len(shape) == 2:
        mask = mask[:1, :shape[0], :shape[1]]
    if len(shape) == 3:
        mask = mask[:1, :shape[0], :shape[1], :shape[2]]

    mask = mask
    mask = (mask - mask.min())
    mask = mask / mask.max()
    return mask


def sample_lam(alpha, reformulate=False):
    """ Sample a lambda from symmetric beta distribution with given alpha
    :param alpha: Alpha value for beta distribution
    :param reformulate: If True, uses the reformulation of [1].
    """
    if reformulate:
        lam = beta.rvs(alpha+1, alpha) # rvs(arg1,arg2,loc=期望, scale=标准差, size=生成随机数的个数) 从分布中生成指定个数的随机数
    else:
        lam = beta.rvs(alpha, alpha)   # rvs(arg1,arg2,loc=期望, scale=标准差, size=生成随机数的个数) 从分布中生成指定个数的随机数

    return lam


def binarise_mask(mask, lam, in_shape, max_soft=0.0):
    """ Binarises a given low frequency image such that it has mean lambda.
    :param mask: Low frequency image, usually the result of `make_low_freq_image`
    :param lam: Mean value of final mask
    :param in_shape: Shape of inputs
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :return:
    """
    idx = mask.reshape(-1).argsort()[::-1]
    mask = mask.reshape(-1)
    num = math.ceil(lam * mask.size) if random.random() > 0.5 else math.floor(lam * mask.size)

    eff_soft = max_soft
    if max_soft > lam or max_soft > (1-lam):
        eff_soft = min(lam, 1-lam)

    soft = int(mask.size * eff_soft)
    num_low = num - soft
    num_high = num + soft

    mask[idx[:num_high]] = 1
    mask[idx[num_low:]] = 0
    mask[idx[num_low:num_high]] = np.linspace(1, 0, (num_high - num_low))

    mask = mask.reshape((1, *in_shape))
    return mask


def sample_mask(alpha, decay_power, shape, max_soft=0.0, reformulate=False):
    """ Samples a mean lambda from beta distribution parametrised by alpha, creates a low frequency image and binarises
    it based on this lambda
    :param alpha: Alpha value for beta distribution from which to sample mean of mask
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :param reformulate: If True, uses the reformulation of [1].
    """
    if isinstance(shape, int):
        shape = (shape,)

    # Choose lambda
    lam = sample_lam(alpha, reformulate)

    # Make mask, get mean / std
    mask = make_low_freq_image(decay_power, shape)
    mask = binarise_mask(mask, lam, shape, max_soft)

    return lam, mask


def sample_and_apply(x, alpha, decay_power, shape, max_soft=0.0, reformulate=False):
    """
    :param x: Image batch on which to apply fmix of shape [b, c, shape*]
    :param alpha: Alpha value for beta distribution from which to sample mean of mask
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :param reformulate: If True, uses the reformulation of [1].
    :return: mixed input, permutation indices, lambda value of mix,
    """
    lam, mask = sample_mask(alpha, decay_power, shape, max_soft, reformulate)
    index = np.random.permutation(x.shape[0])

    x1, x2 = x * mask, x[index] * (1-mask)
    return x1+x2, index, lam


class FMixBase:
    """ FMix augmentation
        Args:
            decay_power (float): Decay power for frequency decay prop 1/f**d
            alpha (float): Alpha value for beta distribution from which to sample mean of mask
            size ([int] | [int, int] | [int, int, int]): Shape of desired mask, list up to 3 dims
            max_soft (float): Softening value between 0 and 0.5 which smooths hard edges in the mask.
            reformulate (bool): If True, uses the reformulation of [1].
    """

    def __init__(self, decay_power=3, alpha=1, size=(32, 32), max_soft=0.0, reformulate=False):
        super().__init__()
        self.decay_power = decay_power
        self.reformulate = reformulate
        self.size = size
        self.alpha = alpha
        self.max_soft = max_soft
        self.index = None
        self.lam = None

    def __call__(self, x):
        raise NotImplementedError

    def loss(self, *args, **kwargs):
        raise NotImplementedError


if __name__ == '__main__':
    # para = {'alpha':1.,'decay_power':3.,'shape':(10,10),'max_soft':0.0,'reformulate':False}
    # lam, mask = sample_mask(**para)  
    # mask = mask.transpose(1, 2, 0)
    # img1 = np.zeros((10, 10, 3))
    # img2 = np.ones((10, 10, 3))
    # img_gt = mask * img1 + (1. - mask) * img2
    # import ipdb; ipdb.set_trace()

    # test
    import cv2
    i1 = cv2.imread('output/ILSVRC2012_val_00000001.JPEG')
    i2 = cv2.imread('output/ILSVRC2012_val_00000002.JPEG')
    para = {'alpha':1.,'decay_power':3.,'shape':(256, 256),'max_soft':0.0,'reformulate':False}
    lam, mask = sample_mask(**para)  
    mask = mask.transpose(1, 2, 0)
    i = mask * i1 + (1. - mask) * i2
    #i = i.astype(np.uint8)
    cv2.imwrite('fmix.jpg', i)