Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
|
7 |
+
# Data training sederhana (gantilah dengan data sebenarnya)
|
8 |
+
X = np.random.rand(100, 2) # Data input acak
|
9 |
+
y = (X[:, 0] + X[:, 1] > 1).astype(int) # Label sederhana (contoh: X1 + X2 > 1)
|
10 |
+
|
11 |
+
# Fungsi untuk melatih model dan menghitung akurasi
|
12 |
+
def train_and_evaluate_model(train_data):
|
13 |
+
# Pisahkan data menjadi fitur dan label
|
14 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
15 |
+
|
16 |
+
# Inisialisasi model (gunakan model yang sesuai dengan kasus sebenarnya)
|
17 |
+
model = LogisticRegression()
|
18 |
+
|
19 |
+
# Latih model pada data pelatihan
|
20 |
+
model.fit(X_train, y_train)
|
21 |
+
|
22 |
+
# Prediksi dengan data uji
|
23 |
+
y_pred = model.predict(X_test)
|
24 |
+
|
25 |
+
# Hitung tingkat akurasi
|
26 |
+
accuracy = accuracy_score(y_test, y_pred)
|
27 |
+
|
28 |
+
return accuracy
|
29 |
+
|
30 |
+
# Antarmuka Gradio untuk input data dan menampilkan akurasi
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=train_and_evaluate_model,
|
33 |
+
inputs="text", # Gradio memungkinkan berbagai jenis input, tetapi kita gunakan "text" sebagai contoh
|
34 |
+
outputs="text"
|
35 |
+
)
|
36 |
+
|
37 |
+
iface.launch()
|