Spaces:
Sleeping
Sleeping
Flavio de Oliveira
commited on
Commit
·
93fecfc
1
Parent(s):
a8e12af
Update all
Browse files- app.py +167 -26
- assets/header.png +0 -0
- assets/teklia_logo.png +0 -0
- examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.jpg +0 -0
- examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.txt +1 -0
- examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.jpg +0 -0
- examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.txt +1 -0
- examples/example01.txt +1 -0
- examples/example02.txt +1 -0
- predict.txt +0 -0
- requirements.txt +3 -1
- teklia_icon_grey.png +0 -0
- test_img_list.txt +0 -1
app.py
CHANGED
@@ -4,9 +4,14 @@ from PIL import Image
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import yaml
|
|
|
|
|
7 |
|
8 |
def resize_image(image, base_height):
|
9 |
|
|
|
|
|
|
|
10 |
# Calculate aspect ratio
|
11 |
w_percent = base_height / float(image.size[1])
|
12 |
w_size = int(float(image.size[0]) * float(w_percent))
|
@@ -14,7 +19,43 @@ def resize_image(image, base_height):
|
|
14 |
# Resize the image
|
15 |
return image.resize((w_size, base_height), Image.Resampling.LANCZOS)
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
try:
|
20 |
|
@@ -53,15 +94,6 @@ def predict(input_image: Image.Image):
|
|
53 |
except subprocess.CalledProcessError as e:
|
54 |
print(f"Command failed with error {e.returncode}, output:\n{e.output}")
|
55 |
|
56 |
-
# subprocess.run(f"pylaia-htr-decode-ctc --config {temp_config_path} | tee predict.txt", shell=True, check=True)
|
57 |
-
|
58 |
-
# Alternative to shell=True (ChatGPT suggestion)
|
59 |
-
# from subprocess import Popen, PIPE
|
60 |
-
|
61 |
-
# # Run the first command and capture its output
|
62 |
-
# p1 = Popen(["pylaia-htr-decode-ctc", "--config", temp_config_path], stdout=PIPE)
|
63 |
-
# output = p1.communicate()[0]
|
64 |
-
|
65 |
# # Write the output to predict.txt
|
66 |
# with open('predict.txt', 'wb') as f:
|
67 |
# f.write(output)
|
@@ -74,23 +106,132 @@ def predict(input_image: Image.Image):
|
|
74 |
else:
|
75 |
print('predict.txt does not exist')
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
except subprocess.CalledProcessError as e:
|
80 |
return f"Command failed with error {e.returncode}"
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
)
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import yaml
|
7 |
+
import base64
|
8 |
+
import evaluate
|
9 |
|
10 |
def resize_image(image, base_height):
|
11 |
|
12 |
+
if image.size[1] == base_height:
|
13 |
+
return image
|
14 |
+
|
15 |
# Calculate aspect ratio
|
16 |
w_percent = base_height / float(image.size[1])
|
17 |
w_size = int(float(image.size[0]) * float(w_percent))
|
|
|
19 |
# Resize the image
|
20 |
return image.resize((w_size, base_height), Image.Resampling.LANCZOS)
|
21 |
|
22 |
+
# Get images and respective transcriptions from the examples directory
|
23 |
+
def get_example_data(folder_path="./examples/"):
|
24 |
+
|
25 |
+
example_data = []
|
26 |
+
|
27 |
+
# Get list of all files in the folder
|
28 |
+
all_files = os.listdir(folder_path)
|
29 |
+
|
30 |
+
# Loop through the file list
|
31 |
+
for file_name in all_files:
|
32 |
+
|
33 |
+
file_path = os.path.join(folder_path, file_name)
|
34 |
+
|
35 |
+
# Check if the file is an image (.png)
|
36 |
+
if file_name.endswith(".jpg"):
|
37 |
+
|
38 |
+
# Construct the corresponding .txt filename (same name)
|
39 |
+
corresponding_text_file_name = file_name.replace(".jpg", ".txt")
|
40 |
+
corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name)
|
41 |
+
|
42 |
+
# Initialize to a default value
|
43 |
+
transcription = "Transcription not found."
|
44 |
+
|
45 |
+
# Try to read the content from the .txt file
|
46 |
+
try:
|
47 |
+
with open(corresponding_text_file_path, "r") as f:
|
48 |
+
transcription = f.read().strip()
|
49 |
+
except FileNotFoundError:
|
50 |
+
pass # If the corresponding .txt file is not found, leave the default value
|
51 |
+
|
52 |
+
example_data.append([file_path, transcription])
|
53 |
+
|
54 |
+
return example_data
|
55 |
+
|
56 |
+
def predict(input_image: Image.Image, ground_truth):
|
57 |
+
|
58 |
+
cer = None
|
59 |
|
60 |
try:
|
61 |
|
|
|
94 |
except subprocess.CalledProcessError as e:
|
95 |
print(f"Command failed with error {e.returncode}, output:\n{e.output}")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# # Write the output to predict.txt
|
98 |
# with open('predict.txt', 'wb') as f:
|
99 |
# f.write(output)
|
|
|
106 |
else:
|
107 |
print('predict.txt does not exist')
|
108 |
|
109 |
+
if ground_truth is not None and ground_truth.strip() != "":
|
110 |
+
|
111 |
+
# Debug: Print lengths before computing metric
|
112 |
+
print("Number of predictions:", len(prediction))
|
113 |
+
print("Number of references:", len(ground_truth))
|
114 |
+
|
115 |
+
# Check if lengths match
|
116 |
+
if len(prediction) != len(ground_truth):
|
117 |
+
|
118 |
+
print("Mismatch in number of predictions and references.")
|
119 |
+
print("Predictions:", prediction)
|
120 |
+
print("References:", ground_truth)
|
121 |
+
print("\n")
|
122 |
+
|
123 |
+
cer = cer_metric.compute(predictions=[prediction], references=[ground_truth])
|
124 |
+
# cer = f"{cer:.3f}"
|
125 |
+
|
126 |
+
else:
|
127 |
+
|
128 |
+
cer = "Ground truth not provided"
|
129 |
+
|
130 |
+
return prediction, cer
|
131 |
|
132 |
except subprocess.CalledProcessError as e:
|
133 |
return f"Command failed with error {e.returncode}"
|
134 |
|
135 |
+
# Encode images
|
136 |
+
with open("assets/header.png", "rb") as img_file:
|
137 |
+
logo_html = base64.b64encode(img_file.read()).decode('utf-8')
|
138 |
+
|
139 |
+
with open("assets/teklia_logo.png", "rb") as img_file:
|
140 |
+
footer_html = base64.b64encode(img_file.read()).decode('utf-8')
|
141 |
+
|
142 |
+
title = """
|
143 |
+
<h1 style='text-align: center'> Hugging Face x Teklia: PyLaia HTR demo</p>
|
144 |
+
"""
|
145 |
+
|
146 |
+
description = """
|
147 |
+
[PyLaia](https://github.com/jpuigcerver/PyLaia) is a device agnostic, PyTorch-based, deep learning toolkit \
|
148 |
+
for handwritten document analysis.
|
149 |
+
This model was trained using PyLaia library on Norwegian historical documents ([NorHand Dataset](https://zenodo.org/record/6542056)) \
|
150 |
+
during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io).
|
151 |
+
* HF `model card`: [Teklia/pylaia-huginmunin](https://huggingface.co/Teklia/pylaia-huginmunin) | \
|
152 |
+
[A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian](https://doi.org/10.1007/978-3-031-06555-2_27)
|
153 |
+
"""
|
154 |
+
|
155 |
+
examples = get_example_data()
|
156 |
+
|
157 |
+
# pip install evaluate
|
158 |
+
# pip install jiwer
|
159 |
+
cer_metric = evaluate.load("cer")
|
160 |
+
|
161 |
+
with gr.Blocks(
|
162 |
+
theme=gr.themes.Soft(),
|
163 |
+
title="PyLaia HTR",
|
164 |
+
) as demo:
|
165 |
+
|
166 |
+
gr.HTML(
|
167 |
+
f"""
|
168 |
+
<div style='display: flex; justify-content: center; width: 100%;'>
|
169 |
+
<img src='data:image/png;base64,{logo_html}' class='img-fluid' width='350px'>
|
170 |
+
</div>
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
#174x60
|
175 |
+
|
176 |
+
title = gr.HTML(title)
|
177 |
+
description = gr.Markdown(description)
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
|
181 |
+
with gr.Column(variant="panel"):
|
182 |
+
|
183 |
+
input = gr.components.Image(type="pil", label="Input image:")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
|
187 |
+
btn_clear = gr.Button(value="Clear")
|
188 |
+
button = gr.Button(value="Submit")
|
189 |
+
|
190 |
+
with gr.Column(variant="panel"):
|
191 |
+
|
192 |
+
output = gr.components.Textbox(label="Generated text:")
|
193 |
+
ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:")
|
194 |
+
cer_output = gr.components.Textbox(label="CER:")
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
|
198 |
+
with gr.Accordion(label="Choose an example from test set:", open=False):
|
199 |
+
|
200 |
+
gr.Examples(
|
201 |
+
examples=examples,
|
202 |
+
inputs = [input, ground_truth],
|
203 |
+
label=None,
|
204 |
+
)
|
205 |
+
|
206 |
+
with gr.Row():
|
207 |
+
|
208 |
+
gr.HTML(
|
209 |
+
f"""
|
210 |
+
<div style="display: flex; align-items: center; justify-content: center">
|
211 |
+
<a href="https://teklia.com/" target="_blank">
|
212 |
+
<img src="data:image/png;base64,{footer_html}" style="width: 100px; height: 80px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
|
213 |
+
</a>
|
214 |
+
<p style="font-size: 13px">
|
215 |
+
| <a href="https://huggingface.co/Teklia">Teklia models on Hugging Face</a>
|
216 |
+
</p>
|
217 |
+
</div>
|
218 |
+
"""
|
219 |
+
)
|
220 |
+
|
221 |
+
button.click(predict, inputs=[input, ground_truth], outputs=[output, cer_output])
|
222 |
+
btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output])
|
223 |
+
|
224 |
+
# Try to force light mode
|
225 |
+
js = """
|
226 |
+
function () {
|
227 |
+
gradioURL = window.location.href
|
228 |
+
if (!gradioURL.endsWith('?__theme=light')) {
|
229 |
+
window.location.replace(gradioURL + '?__theme=light');
|
230 |
+
}
|
231 |
+
}"""
|
232 |
+
|
233 |
+
demo.load(_js=js)
|
234 |
+
|
235 |
+
if __name__ == "__main__":
|
236 |
+
|
237 |
+
demo.launch(favicon_path="teklia_icon_grey.png")
|
assets/header.png
ADDED
assets/teklia_logo.png
ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.jpg
ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
lide den tort at jeg blev borte for ham. Maaske var det
|
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.jpg
ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
hans hensigt at opdage Deres bolig, maaske blot at
|
examples/example01.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
og Valstad kan vi vist
|
examples/example02.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ikke gjøre Regning paa,
|
predict.txt
ADDED
File without changes
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
git+https://github.com/jpuigcerver/PyLaia/
|
2 |
-
nnutils-pytorch
|
|
|
|
|
|
1 |
git+https://github.com/jpuigcerver/PyLaia/
|
2 |
+
nnutils-pytorch
|
3 |
+
jiwer==3.0.3
|
4 |
+
evaluate==0.4.0
|
teklia_icon_grey.png
ADDED
test_img_list.txt
CHANGED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|