Flavio de Oliveira commited on
Commit
93fecfc
·
1 Parent(s): a8e12af

Update all

Browse files
app.py CHANGED
@@ -4,9 +4,14 @@ from PIL import Image
4
  import tempfile
5
  import os
6
  import yaml
 
 
7
 
8
  def resize_image(image, base_height):
9
 
 
 
 
10
  # Calculate aspect ratio
11
  w_percent = base_height / float(image.size[1])
12
  w_size = int(float(image.size[0]) * float(w_percent))
@@ -14,7 +19,43 @@ def resize_image(image, base_height):
14
  # Resize the image
15
  return image.resize((w_size, base_height), Image.Resampling.LANCZOS)
16
 
17
- def predict(input_image: Image.Image):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  try:
20
 
@@ -53,15 +94,6 @@ def predict(input_image: Image.Image):
53
  except subprocess.CalledProcessError as e:
54
  print(f"Command failed with error {e.returncode}, output:\n{e.output}")
55
 
56
- # subprocess.run(f"pylaia-htr-decode-ctc --config {temp_config_path} | tee predict.txt", shell=True, check=True)
57
-
58
- # Alternative to shell=True (ChatGPT suggestion)
59
- # from subprocess import Popen, PIPE
60
-
61
- # # Run the first command and capture its output
62
- # p1 = Popen(["pylaia-htr-decode-ctc", "--config", temp_config_path], stdout=PIPE)
63
- # output = p1.communicate()[0]
64
-
65
  # # Write the output to predict.txt
66
  # with open('predict.txt', 'wb') as f:
67
  # f.write(output)
@@ -74,23 +106,132 @@ def predict(input_image: Image.Image):
74
  else:
75
  print('predict.txt does not exist')
76
 
77
- return prediction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  except subprocess.CalledProcessError as e:
80
  return f"Command failed with error {e.returncode}"
81
 
82
- # Gradio interface
83
- title = "PyLaia HTR"
84
- description = "Inference using PyLaia models."
85
- examples = [["examples/example01.jpg"], ["examples/example02.jpg"]]
86
-
87
- iface = gr.Interface(
88
- fn=predict,
89
- inputs=gr.inputs.Image(type="pil"),
90
- outputs=gr.outputs.Textbox(),
91
- title=title,
92
- description=description,
93
- examples=examples
94
- )
95
-
96
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  import tempfile
5
  import os
6
  import yaml
7
+ import base64
8
+ import evaluate
9
 
10
  def resize_image(image, base_height):
11
 
12
+ if image.size[1] == base_height:
13
+ return image
14
+
15
  # Calculate aspect ratio
16
  w_percent = base_height / float(image.size[1])
17
  w_size = int(float(image.size[0]) * float(w_percent))
 
19
  # Resize the image
20
  return image.resize((w_size, base_height), Image.Resampling.LANCZOS)
21
 
22
+ # Get images and respective transcriptions from the examples directory
23
+ def get_example_data(folder_path="./examples/"):
24
+
25
+ example_data = []
26
+
27
+ # Get list of all files in the folder
28
+ all_files = os.listdir(folder_path)
29
+
30
+ # Loop through the file list
31
+ for file_name in all_files:
32
+
33
+ file_path = os.path.join(folder_path, file_name)
34
+
35
+ # Check if the file is an image (.png)
36
+ if file_name.endswith(".jpg"):
37
+
38
+ # Construct the corresponding .txt filename (same name)
39
+ corresponding_text_file_name = file_name.replace(".jpg", ".txt")
40
+ corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name)
41
+
42
+ # Initialize to a default value
43
+ transcription = "Transcription not found."
44
+
45
+ # Try to read the content from the .txt file
46
+ try:
47
+ with open(corresponding_text_file_path, "r") as f:
48
+ transcription = f.read().strip()
49
+ except FileNotFoundError:
50
+ pass # If the corresponding .txt file is not found, leave the default value
51
+
52
+ example_data.append([file_path, transcription])
53
+
54
+ return example_data
55
+
56
+ def predict(input_image: Image.Image, ground_truth):
57
+
58
+ cer = None
59
 
60
  try:
61
 
 
94
  except subprocess.CalledProcessError as e:
95
  print(f"Command failed with error {e.returncode}, output:\n{e.output}")
96
 
 
 
 
 
 
 
 
 
 
97
  # # Write the output to predict.txt
98
  # with open('predict.txt', 'wb') as f:
99
  # f.write(output)
 
106
  else:
107
  print('predict.txt does not exist')
108
 
109
+ if ground_truth is not None and ground_truth.strip() != "":
110
+
111
+ # Debug: Print lengths before computing metric
112
+ print("Number of predictions:", len(prediction))
113
+ print("Number of references:", len(ground_truth))
114
+
115
+ # Check if lengths match
116
+ if len(prediction) != len(ground_truth):
117
+
118
+ print("Mismatch in number of predictions and references.")
119
+ print("Predictions:", prediction)
120
+ print("References:", ground_truth)
121
+ print("\n")
122
+
123
+ cer = cer_metric.compute(predictions=[prediction], references=[ground_truth])
124
+ # cer = f"{cer:.3f}"
125
+
126
+ else:
127
+
128
+ cer = "Ground truth not provided"
129
+
130
+ return prediction, cer
131
 
132
  except subprocess.CalledProcessError as e:
133
  return f"Command failed with error {e.returncode}"
134
 
135
+ # Encode images
136
+ with open("assets/header.png", "rb") as img_file:
137
+ logo_html = base64.b64encode(img_file.read()).decode('utf-8')
138
+
139
+ with open("assets/teklia_logo.png", "rb") as img_file:
140
+ footer_html = base64.b64encode(img_file.read()).decode('utf-8')
141
+
142
+ title = """
143
+ <h1 style='text-align: center'> Hugging Face x Teklia: PyLaia HTR demo</p>
144
+ """
145
+
146
+ description = """
147
+ [PyLaia](https://github.com/jpuigcerver/PyLaia) is a device agnostic, PyTorch-based, deep learning toolkit \
148
+ for handwritten document analysis.
149
+ This model was trained using PyLaia library on Norwegian historical documents ([NorHand Dataset](https://zenodo.org/record/6542056)) \
150
+ during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io).
151
+ * HF `model card`: [Teklia/pylaia-huginmunin](https://huggingface.co/Teklia/pylaia-huginmunin) | \
152
+ [A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian](https://doi.org/10.1007/978-3-031-06555-2_27)
153
+ """
154
+
155
+ examples = get_example_data()
156
+
157
+ # pip install evaluate
158
+ # pip install jiwer
159
+ cer_metric = evaluate.load("cer")
160
+
161
+ with gr.Blocks(
162
+ theme=gr.themes.Soft(),
163
+ title="PyLaia HTR",
164
+ ) as demo:
165
+
166
+ gr.HTML(
167
+ f"""
168
+ <div style='display: flex; justify-content: center; width: 100%;'>
169
+ <img src='data:image/png;base64,{logo_html}' class='img-fluid' width='350px'>
170
+ </div>
171
+ """
172
+ )
173
+
174
+ #174x60
175
+
176
+ title = gr.HTML(title)
177
+ description = gr.Markdown(description)
178
+
179
+ with gr.Row():
180
+
181
+ with gr.Column(variant="panel"):
182
+
183
+ input = gr.components.Image(type="pil", label="Input image:")
184
+
185
+ with gr.Row():
186
+
187
+ btn_clear = gr.Button(value="Clear")
188
+ button = gr.Button(value="Submit")
189
+
190
+ with gr.Column(variant="panel"):
191
+
192
+ output = gr.components.Textbox(label="Generated text:")
193
+ ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:")
194
+ cer_output = gr.components.Textbox(label="CER:")
195
+
196
+ with gr.Row():
197
+
198
+ with gr.Accordion(label="Choose an example from test set:", open=False):
199
+
200
+ gr.Examples(
201
+ examples=examples,
202
+ inputs = [input, ground_truth],
203
+ label=None,
204
+ )
205
+
206
+ with gr.Row():
207
+
208
+ gr.HTML(
209
+ f"""
210
+ <div style="display: flex; align-items: center; justify-content: center">
211
+ <a href="https://teklia.com/" target="_blank">
212
+ <img src="data:image/png;base64,{footer_html}" style="width: 100px; height: 80px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
213
+ </a>
214
+ <p style="font-size: 13px">
215
+ | <a href="https://huggingface.co/Teklia">Teklia models on Hugging Face</a>
216
+ </p>
217
+ </div>
218
+ """
219
+ )
220
+
221
+ button.click(predict, inputs=[input, ground_truth], outputs=[output, cer_output])
222
+ btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output])
223
+
224
+ # Try to force light mode
225
+ js = """
226
+ function () {
227
+ gradioURL = window.location.href
228
+ if (!gradioURL.endsWith('?__theme=light')) {
229
+ window.location.replace(gradioURL + '?__theme=light');
230
+ }
231
+ }"""
232
+
233
+ demo.load(_js=js)
234
+
235
+ if __name__ == "__main__":
236
+
237
+ demo.launch(favicon_path="teklia_icon_grey.png")
assets/header.png ADDED
assets/teklia_logo.png ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.jpg ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_0.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ lide den tort at jeg blev borte for ham. Maaske var det
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.jpg ADDED
examples/0ca7c28a-6d9e-4bc1-9b77-58dfdffd8b1b_1.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ hans hensigt at opdage Deres bolig, maaske blot at
examples/example01.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ og Valstad kan vi vist
examples/example02.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ikke gjøre Regning paa,
predict.txt ADDED
File without changes
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  git+https://github.com/jpuigcerver/PyLaia/
2
- nnutils-pytorch
 
 
 
1
  git+https://github.com/jpuigcerver/PyLaia/
2
+ nnutils-pytorch
3
+ jiwer==3.0.3
4
+ evaluate==0.4.0
teklia_icon_grey.png ADDED
test_img_list.txt CHANGED
@@ -1 +0,0 @@
1
-