File size: 4,930 Bytes
2bbf92c
 
 
 
 
 
69e32d1
690384a
 
 
 
 
 
 
 
 
 
 
2bbf92c
 
 
 
 
f4963f2
 
 
 
690384a
69e32d1
2bbf92c
 
 
690384a
69e32d1
b5bd188
690384a
 
 
2bbf92c
690384a
 
2bbf92c
69e32d1
690384a
69e32d1
 
690384a
 
07c84c4
 
690384a
 
 
69e32d1
 
 
 
 
 
 
690384a
2bbf92c
 
01fc68e
 
 
 
 
583a144
01fc68e
 
583a144
690384a
 
 
583a144
f4963f2
69e32d1
 
 
2bbf92c
f4963f2
690384a
 
 
 
 
 
 
2bbf92c
f4963f2
2bbf92c
690384a
f4963f2
690384a
2bbf92c
690384a
 
 
 
 
2bbf92c
690384a
2bbf92c
f4963f2
2bbf92c
69e32d1
2bbf92c
690384a
2bbf92c
690384a
f4963f2
2bbf92c
 
07c84c4
f4963f2
2bbf92c
69e32d1
07c84c4
69e32d1
2bbf92c
69e32d1
690384a
 
 
2bbf92c
 
 
690384a
 
 
 
 
 
 
2bbf92c
690384a
2bbf92c
690384a
b5bd188
2bbf92c
 
f4963f2
2bbf92c
690384a
8b842e0
 
627e34d
8b842e0
627e34d
690384a
 
 
627e34d
 
8b842e0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit.elements import markdown
import cv2
from model.flax_clip_vision_bert.modeling_clip_vision_bert import (
    FlaxCLIPVisionBertForSequenceClassification,
)
from utils import (
    get_transformed_image,
    get_text_attributes,
    get_top_5_predictions,
    plotly_express_horizontal_bar_plot,
    translate_labels,
)
import matplotlib.pyplot as plt
from mtranslate import translate
from PIL import Image


from session import _get_state

state = _get_state()


@st.cache(persist=True)
def load_model(ckpt):
    return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)


@st.cache(persist=True)
def predict(transformed_image, question_inputs):
    return np.array(model(pixel_values=transformed_image, **question_inputs)[0][0])


def softmax(logits):
    return np.exp(logits) / np.sum(np.exp(logits), axis=0)


def read_markdown(path, parent="./sections/"):
    with open(os.path.join(parent, path)) as f:
        return f.read()

def resize_height(image, new_height):
    h, w, c = image.shape
    new_width = int(w * new_height / h)
    return cv2.resize(image, (new_width, new_height))

checkpoints = ["./ckpt/ckpt-60k-5999"]  # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("dummy_vqa_multilingual.tsv", sep="\t")
code_to_name = {
    "en": "English",
    "fr": "French",
    "de": "German",
    "es": "Spanish",
}

with open("answer_reverse_mapping.json") as f:
    answer_reverse_mapping = json.load(f)


st.set_page_config(
    page_title="Multilingual VQA",
    layout="wide",
    initial_sidebar_state="collapsed",
    page_icon="./misc/mvqa-logo.png",
)

st.title("Multilingual Visual Question Answering")
st.write(
    "[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
)

with st.beta_expander("Usage"):
    st.markdown(read_markdown("usage.md"))

first_index = 20
# Init Session State
if state.image_file is None:
    state.image_file = dummy_data.loc[first_index, "image_file"]
    state.question = dummy_data.loc[first_index, "question"].strip("- ")
    state.answer_label = dummy_data.loc[first_index, "answer_label"]
    state.question_lang_id = dummy_data.loc[first_index, "lang_id"]
    state.answer_lang_id = dummy_data.loc[first_index, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

col1, col2 = st.beta_columns([6, 4])

if col2.button("Get a random example"):
    sample = dummy_data.sample(1).reset_index()
    state.image_file = sample.loc[0, "image_file"]
    state.question = sample.loc[0, "question"].strip("- ")
    state.answer_label = sample.loc[0, "answer_label"]
    state.question_lang_id = sample.loc[0, "lang_id"]
    state.answer_lang_id = sample.loc[0, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

col2.write("OR")

uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
    state.image_file = os.path.join("images/val2014", uploaded_file.name)
    state.image = np.array(Image.open(uploaded_file))


state.image = resize_height(state.image, 224)
transformed_image = get_transformed_image(state.image)

# Display Image
col1.image(state.image, use_column_width="auto")

# Display Question
question = col2.text_input(label="Question", value=state.question)
col2.markdown(
    f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}"""
)
question_inputs = get_text_attributes(question)

# Select Language
options = ["en", "de", "es", "fr"]
state.answer_lang_id = col2.selectbox(
    "Answer Language",
    index=options.index(state.answer_lang_id),
    options=options,
    format_func=lambda x: code_to_name[x],
)
# Display Top-5 Predictions
with st.spinner("Loading model..."):
    model = load_model(checkpoints[0])
with st.spinner("Predicting..."):
    logits = predict(transformed_image, dict(question_inputs))
logits = softmax(logits)
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
translated_labels = translate_labels(labels, state.answer_lang_id)
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
st.plotly_chart(fig, use_container_width=True)


st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("# Methodology")
st.image(
    "./misc/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining."
)
st.markdown(read_markdown("pretraining.md"))
st.markdown(read_markdown("finetuning.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("references.md"))
st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))