Spaces:
Runtime error
Runtime error
File size: 4,639 Bytes
2bbf92c 69e32d1 2bbf92c f4963f2 69e32d1 2bbf92c 69e32d1 b5bd188 69e32d1 2bbf92c 69e32d1 2bbf92c 69e32d1 2bbf92c 01fc68e 583a144 01fc68e 583a144 69e32d1 583a144 f4963f2 69e32d1 2bbf92c f4963f2 69e32d1 2bbf92c f4963f2 2bbf92c f4963f2 2bbf92c 69e32d1 f4963f2 2bbf92c f4963f2 2bbf92c f4963f2 2bbf92c f4963f2 2bbf92c 69e32d1 2bbf92c f4963f2 2bbf92c f4963f2 2bbf92c 69e32d1 2bbf92c 69e32d1 2bbf92c 69e32d1 2bbf92c b5bd188 2bbf92c f4963f2 2bbf92c 8b842e0 627e34d 8b842e0 627e34d 8b842e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit.elements import markdown
from model.flax_clip_vision_bert.modeling_clip_vision_bert import FlaxCLIPVisionBertForSequenceClassification
from utils import get_transformed_image, get_text_attributes, get_top_5_predictions, plotly_express_horizontal_bar_plot, translate_labels
import matplotlib.pyplot as plt
from mtranslate import translate
from PIL import Image
from session import _get_state
state = _get_state()
@st.cache(persist=True)
def load_model(ckpt):
return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)
@st.cache(persist=True)
def predict(transformed_image, question_inputs):
return np.array(model(pixel_values = transformed_image, **question_inputs)[0][0])
def softmax(logits):
return np.exp(logits)/np.sum(np.exp(logits), axis=0)
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent,path)) as f:
return f.read()
checkpoints = ['./ckpt/ckpt-60k-5999'] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv('dummy_vqa_multilingual.tsv', sep='\t')
code_to_name = {
"en": "English",
"fr": "French",
"de": "German",
"es": "Spanish",
}
with open('answer_reverse_mapping.json') as f:
answer_reverse_mapping = json.load(f)
st.set_page_config(
page_title="Multilingual VQA",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/mvqa-logo.png",
)
st.title("Multilingual Visual Question Answering")
st.write("[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)")
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
first_index = 20
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index,'image_file']
state.question = dummy_data.loc[first_index,'question'].strip('- ')
state.answer_label = dummy_data.loc[first_index,'answer_label']
state.question_lang_id = dummy_data.loc[first_index, 'lang_id']
state.answer_lang_id = dummy_data.loc[first_index, 'lang_id']
image_path = os.path.join('images',state.image_file)
image = plt.imread(image_path)
state.image = image
col1, col2 = st.beta_columns([6,4])
if col2.button('Get a random example'):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0,'image_file']
state.question = sample.loc[0,'question'].strip('- ')
state.answer_label = sample.loc[0,'answer_label']
state.question_lang_id = sample.loc[0, 'lang_id']
state.answer_lang_id = sample.loc[0, 'lang_id']
image_path = os.path.join('images',state.image_file)
image = plt.imread(image_path)
state.image = image
col2.write("OR")
uploaded_file = col2.file_uploader('Upload your image', type=['png','jpg','jpeg'])
if uploaded_file is not None:
state.image_file = os.path.join('images/val2014',uploaded_file.name)
state.image = np.array(Image.open(uploaded_file))
transformed_image = get_transformed_image(state.image)
# Display Image
col1.image(state.image, use_column_width='always')
# Display Question
question = col2.text_input(label="Question", value=state.question)
col2.markdown(f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}""")
question_inputs = get_text_attributes(question)
# Select Language
options = ['en', 'de', 'es', 'fr']
state.answer_lang_id = col2.selectbox('Answer Language', index=options.index(state.answer_lang_id), options=options, format_func = lambda x: code_to_name[x])
# Display Top-5 Predictions
with st.spinner('Loading model...'):
model = load_model(checkpoints[0])
with st.spinner('Predicting...'):
logits = predict(transformed_image, dict(question_inputs))
logits = softmax(logits)
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
translated_labels = translate_labels(labels, state.answer_lang_id)
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
st.plotly_chart(fig, use_container_width = True)
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("# Methodology")
st.image("./misc/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining.")
st.markdown(read_markdown("pretraining.md"))
st.markdown(read_markdown("finetuning.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("references.md"))
st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))
|