File size: 5,754 Bytes
2bbf92c
 
 
 
 
 
69e32d1
9e939e7
690384a
 
 
 
 
 
 
 
 
 
2bbf92c
 
 
 
f4963f2
 
 
 
690384a
69e32d1
2bbf92c
 
 
690384a
69e32d1
b5bd188
690384a
 
 
2bbf92c
690384a
 
2bbf92c
69e32d1
690384a
69e32d1
 
9e939e7
 
 
 
 
690384a
 
 
69e32d1
 
 
 
 
 
 
690384a
2bbf92c
 
01fc68e
 
 
 
 
0808df5
01fc68e
 
583a144
690384a
 
 
583a144
7a89f67
0808df5
 
f4963f2
0808df5
 
 
 
 
7a89f67
0808df5
 
 
 
 
 
 
 
 
 
69e32d1
 
2bbf92c
f4963f2
690384a
 
 
 
 
 
 
2bbf92c
f4963f2
2bbf92c
690384a
f4963f2
7a89f67
2bbf92c
690384a
 
 
 
 
2bbf92c
690384a
2bbf92c
f4963f2
2bbf92c
69e32d1
2bbf92c
7a89f67
2bbf92c
7a89f67
 
 
2bbf92c
f4963f2
2bbf92c
69e32d1
07c84c4
69e32d1
0808df5
2bbf92c
7a89f67
0808df5
690384a
 
7c9f5a6
2bbf92c
 
 
690384a
0808df5
690384a
 
 
 
7a89f67
690384a
0808df5
7a89f67
 
0808df5
2bbf92c
690384a
2bbf92c
690384a
b5bd188
2bbf92c
 
f4963f2
2bbf92c
690384a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit.elements import markdown
from PIL import Image
from model.flax_clip_vision_bert.modeling_clip_vision_bert import (
    FlaxCLIPVisionBertForSequenceClassification,
)
from utils import (
    get_transformed_image,
    get_text_attributes,
    get_top_5_predictions,
    plotly_express_horizontal_bar_plot,
    translate_labels,
)
import matplotlib.pyplot as plt
from mtranslate import translate


from session import _get_state

state = _get_state()


@st.cache(persist=True)
def load_model(ckpt):
    return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)


@st.cache(persist=True)
def predict(transformed_image, question_inputs):
    return np.array(model(pixel_values=transformed_image, **question_inputs)[0][0])


def softmax(logits):
    return np.exp(logits) / np.sum(np.exp(logits), axis=0)


def read_markdown(path, parent="./sections/"):
    with open(os.path.join(parent, path)) as f:
        return f.read()


# def resize_height(image, new_height):
#     h, w, c = image.shape
#     new_width = int(w * new_height / h)
#     return cv2.resize(image, (new_width, new_height))

checkpoints = ["./ckpt/ckpt-60k-5999"]  # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("dummy_vqa_multilingual.tsv", sep="\t")
code_to_name = {
    "en": "English",
    "fr": "French",
    "de": "German",
    "es": "Spanish",
}

with open("answer_reverse_mapping.json") as f:
    answer_reverse_mapping = json.load(f)


st.set_page_config(
    page_title="Multilingual VQA",
    layout="wide",
    initial_sidebar_state="collapsed",
    page_icon="./misc/mvqa-logo-white.png",
)

st.title("Multilingual Visual Question Answering")
st.write(
    "[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
)

image_col, intro_col = st.beta_columns([3,8])
image_col.image("./misc/mvqa-logo-white.png", use_column_width='always')
intro_col.write(read_markdown('intro.md'))
with st.beta_expander("Usage"):
    st.write(read_markdown("usage.md"))

with st.beta_expander("Article"):
    st.write(read_markdown("abstract.md"))
    st.write(read_markdown("caveats.md"))
    st.write("## Methodology")
    st.image(
        "./misc/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining."
    )
    st.markdown(read_markdown("pretraining.md"))
    st.markdown(read_markdown("finetuning.md"))
    st.write(read_markdown("challenges.md"))
    st.write(read_markdown("social_impact.md"))
    st.write(read_markdown("references.md"))
    st.write(read_markdown("checkpoints.md"))
    st.write(read_markdown("acknowledgements.md"))

first_index = 20
# Init Session State
if state.image_file is None:
    state.image_file = dummy_data.loc[first_index, "image_file"]
    state.question = dummy_data.loc[first_index, "question"].strip("- ")
    state.answer_label = dummy_data.loc[first_index, "answer_label"]
    state.question_lang_id = dummy_data.loc[first_index, "lang_id"]
    state.answer_lang_id = dummy_data.loc[first_index, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

col1, col2 = st.beta_columns([6, 4])

if col2.button("Get a random example", help="Get a random example from the 100 `seeded` image-text pairs."):
    sample = dummy_data.sample(1).reset_index()
    state.image_file = sample.loc[0, "image_file"]
    state.question = sample.loc[0, "question"].strip("- ")
    state.answer_label = sample.loc[0, "answer_label"]
    state.question_lang_id = sample.loc[0, "lang_id"]
    state.answer_lang_id = sample.loc[0, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

col2.write("OR")

uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"], help="Upload a file of your choosing.")
if uploaded_file is not None:
    st.error("Uploading files does not work on HuggingFace spaces. This app only supports random examples for now.")
    # state.image_file = os.path.join("images/val2014", uploaded_file.name)
    # state.image = np.array(Image.open(uploaded_file))

transformed_image = get_transformed_image(state.image)

# Display Image
col1.image(state.image, use_column_width="auto")

new_col1, new_col2 = st.beta_columns([5,5])
# Display Question
question = new_col1.text_input(label="Question", value=state.question, help="Type your question regarding the image above in one of the four languages.")
new_col1.markdown(
    f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}"""
)

question_inputs = get_text_attributes(question)

# Select Language
options = ["en", "de", "es", "fr"]
state.answer_lang_id = new_col2.selectbox(
    "Answer Language",
    index=options.index(state.answer_lang_id),
    options=options,
    format_func=lambda x: code_to_name[x],
    help="The language to be used to show the top-5 labels."
)

actual_answer = answer_reverse_mapping[str(state.answer_label)]
new_col2.markdown("**Actual Answer**: " + translate_labels([actual_answer], state.answer_lang_id)[0]+" ("+actual_answer+")")

# Display Top-5 Predictions
with st.spinner("Loading model..."):
    model = load_model(checkpoints[0])
with st.spinner("Predicting..."):
    logits = predict(transformed_image, dict(question_inputs))
logits = softmax(logits)
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
translated_labels = translate_labels(labels, state.answer_lang_id)
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
st.plotly_chart(fig, use_container_width=True)