Spaces:
Runtime error
Runtime error
File size: 11,762 Bytes
44c11f2 c399665 ba57ea8 ffe19d9 53ddc87 f54892c b3c9da2 b929de0 919efff 66b1416 b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff 29e00f0 44c11f2 b3c9da2 44c11f2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 63672a5 919efff b3c9da2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 63672a5 919efff b3c9da2 44c11f2 919efff b3c9da2 287b7cd ffe19d9 919efff ffe19d9 53ddc87 919efff b3c9da2 44c11f2 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 919efff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
from .utils import Toc
def bias_examples():
# Gender
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("")
col2.image("./sections/bias_examples/female_cricketer.jpeg", use_column_width='always', caption="https://www.crictracker.com/wp-content/uploads/2018/06/Sarah-Taylor-1.jpg")
col3.image("./sections/bias_examples/male_cricketer.jpeg", use_column_width='always', caption="https://www.cricket.com.au/~/-/media/News/2019/02/11pucovskiw.ashx?w=1600")
col4.image("./sections/bias_examples/male_cricketer_indian.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.FOdOQvpiFA_HE32pA0zB-QHaEd&pid=Api")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**What is the sex of the person?**")
col2.write("Female")
col3.write("Female")
col4.write("Male")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cual es el sexo de la persona?")
col2.write("mujer")
col3.write("mujer")
col4.write("masculino")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Quel est le sexe de la personne ?")
col2.write("femelle")
col3.write("femelle")
col4.write("Masculin")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Welches Geschlecht hat die Person?")
col2.write("weiblich")
col3.write("mannlich")
col4.write("mannlich")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this person male?**")
col2.write("yes")
col3.write("yes")
col4.write("yes")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Esta persona es hombre?")
col2.write("si")
col3.write("si")
col4.write("si")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cette personne est-elle un homme ?")
col2.write("Oui")
col3.write("Oui")
col4.write("Oui")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist diese Person männlich?")
col2.write("Ja")
col3.write("Ja")
col4.write("Ja")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this person female?**")
col2.write("no")
col3.write("yes")
col4.write("yes")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Esta persona es mujer?")
col2.write("si")
col3.write("si")
col4.write("si")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cette personne est-elle un femme ?")
col2.write("Oui")
col3.write("Oui")
col4.write("Oui")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist diese Person weiblich?")
col2.write("Nein")
col3.write("Ja")
col4.write("Ja")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Do you think this person is male or female?**")
col2.write("female")
col3.write("female")
col4.write("male")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Crees que esta persona es hombre o mujer?")
col2.write("mujer")
col3.write("mujer")
col4.write("masculino")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
col2.write("femelle")
col3.write("Masculin")
col4.write("femelle")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
col2.write("weiblich")
col3.write("weiblich")
col4.write("mannlich")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this cricketer male or female?**")
col2.write("female")
col3.write("female")
col4.write("male")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Este jugador de críquet es hombre o mujer?")
col2.write("mujer")
col3.write("mujer")
col4.write("masculino")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ce joueur de cricket est-il un homme ou une femme ?")
col2.write("femelle")
col3.write("femelle")
col4.write("femelle")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist dieser Cricketspieler männlich oder weiblich?")
col2.write("weiblich")
col3.write("mannlich")
col4.write("mannlich")
# Programmmer
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("")
col2.image("./sections/bias_examples/female_programmer.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.GZ3Ol84W4UcOpVR9oawWygHaE7&pid=Api")
col3.image("./sections/bias_examples/male_programmer.jpeg", use_column_width='always', caption="https://thumbs.dreamstime.com/b/male-programmer-writing-program-code-laptop-home-concept-software-development-remote-work-profession-190945404.jpg")
col4.image("./sections/bias_examples/female_programmer_short_haired.jpeg", use_column_width='always', caption="https://media.istockphoto.com/photos/profile-view-of-young-female-programmer-working-on-computer-software-picture-id1125595211")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**What is the sex of the person?**")
col2.write("Female")
col3.write("Male")
col4.write("female")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cual es el sexo de la persona?")
col2.write("mujer")
col3.write("masculino")
col4.write("mujer")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Quel est le sexe de la personne ?")
col2.write("femelle")
col3.write("Masculin")
col4.write("femelle")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Welches Geschlecht hat die Person?")
col2.write("weiblich")
col3.write("mannlich")
col4.write("weiblich")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this person male?**")
col2.write("no")
col3.write("yes")
col4.write("no")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Esta persona es hombre?")
col2.write("no")
col3.write("si")
col4.write("no")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cette personne est-elle un homme ?")
col2.write("non")
col3.write("Oui")
col4.write("non")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist diese Person männlich?")
col2.write("Nein")
col3.write("Ja")
col4.write("Nein")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this person female?**")
col2.write("yes")
col3.write("no")
col4.write("yes")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Esta persona es mujer?")
col2.write("si")
col3.write("no")
col4.write("si")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Cette personne est-elle un femme ?")
col2.write("Oui")
col3.write("non")
col4.write("Oui")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist diese Person weiblich?")
col2.write("Nein")
col3.write("Nein")
col4.write("Nein")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Do you think this person is male or female?**")
col2.write("female")
col3.write("male")
col4.write("female")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Crees que esta persona es hombre o mujer?")
col2.write("mujer")
col3.write("masculino")
col4.write("mujer")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
col2.write("femelle")
col3.write("masculin")
col4.write("femelle")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
col2.write("weiblich")
col3.write("mannlich")
col4.write("weiblich")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("**Is this programmer male or female?**")
col2.write("female")
col3.write("male")
col4.write("female")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("¿Este programador es hombre o mujer?")
col2.write("mujer")
col3.write("masculino")
col4.write("mujer")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ce programmeur est-il un homme ou une femme ?")
col2.write("femme")
col3.write("homme")
col4.write("femme")
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
col1.write("Ist dieser Programmierer männlich oder weiblich?")
col2.write("weiblich")
col3.write("mannlich")
col4.write("weiblich")
def app(state=None):
#kill_tensorboard()
toc = Toc()
st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
st.header("Table of Contents")
toc.placeholder()
toc.header("Introduction and Motivation")
st.write(read_markdown("intro/intro.md"))
toc.subheader("Novel Contributions")
st.write(read_markdown("intro/contributions.md"))
toc.header("Methodology")
toc.subheader("Pre-training")
st.write(read_markdown("pretraining/intro.md"))
# col1, col2 = st.beta_columns([5,5])
st.image(
"./misc/article/Multilingual-VQA.png",
caption="Masked LM model for Image-text Pre-training.",
)
toc.subsubheader("MLM Dataset")
st.write(read_markdown("pretraining/data.md"))
toc.subsubheader("MLM Model")
st.write(read_markdown("pretraining/model.md"))
toc.subsubheader("MLM Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
toc.subheader("Finetuning")
toc.subsubheader("VQA Dataset")
st.write(read_markdown("finetuning/data.md"))
toc.subsubheader("VQA Model")
st.write(read_markdown("finetuning/model.md"))
toc.subsubheader("VQA Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
st_tensorboard(logdir='./logs/finetune_logs', port=6007)
toc.header("Challenges and Technical Difficulties")
st.write(read_markdown("challenges.md"))
toc.header("Limitations")
st.write(read_markdown("limitations.md"))
#bias_examples()
# toc.header("Conclusion, Future Work, and Social Impact")
# toc.subheader("Conclusion")
# st.write(read_markdown("conclusion_future_work/conclusion.md"))
# toc.subheader("Future Work")
# st.write(read_markdown("conclusion_future_work/future_work.md"))
# toc.subheader("Social Impact")
st.write(read_markdown("conclusion_future_work/social_impact.md"))
toc.header("References")
st.write(read_markdown("references.md"))
toc.header("Checkpoints")
st.write(read_markdown("checkpoints/checkpoints.md"))
toc.subheader("Other Checkpoints")
st.write(read_markdown("checkpoints/other_checkpoints.md"))
toc.header("Acknowledgements")
st.write(read_markdown("acknowledgements.md"))
toc.generate() |