File size: 11,762 Bytes
44c11f2
 
c399665
ba57ea8
ffe19d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ddc87
f54892c
b3c9da2
b929de0
919efff
66b1416
b3c9da2
919efff
b3c9da2
919efff
b3c9da2
919efff
 
b3c9da2
919efff
b3c9da2
919efff
 
29e00f0
44c11f2
b3c9da2
44c11f2
8527e35
919efff
8527e35
919efff
8527e35
b929de0
63672a5
919efff
 
b3c9da2
8527e35
919efff
8527e35
919efff
8527e35
b929de0
63672a5
919efff
b3c9da2
44c11f2
919efff
b3c9da2
287b7cd
ffe19d9
 
919efff
ffe19d9
 
 
 
 
 
53ddc87
919efff
b3c9da2
44c11f2
919efff
b3c9da2
53ddc87
b3c9da2
53ddc87
919efff
b3c9da2
919efff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
from .utils import Toc

def bias_examples():
    # Gender
    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("")
    col2.image("./sections/bias_examples/female_cricketer.jpeg", use_column_width='always', caption="https://www.crictracker.com/wp-content/uploads/2018/06/Sarah-Taylor-1.jpg")

    col3.image("./sections/bias_examples/male_cricketer.jpeg", use_column_width='always', caption="https://www.cricket.com.au/~/-/media/News/2019/02/11pucovskiw.ashx?w=1600")
    
    col4.image("./sections/bias_examples/male_cricketer_indian.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.FOdOQvpiFA_HE32pA0zB-QHaEd&pid=Api")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("**What is the sex of the person?**")
    col2.write("Female")
    col3.write("Female")
    col4.write("Male")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cual es el sexo de la persona?")
    col2.write("mujer")
    col3.write("mujer")
    col4.write("masculino")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Quel est le sexe de la personne ?")
    col2.write("femelle")
    col3.write("femelle")
    col4.write("Masculin")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Welches Geschlecht hat die Person?")
    col2.write("weiblich")
    col3.write("mannlich")
    col4.write("mannlich")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person male?**")
    col2.write("yes")
    col3.write("yes")
    col4.write("yes")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es hombre?")
    col2.write("si")
    col3.write("si")
    col4.write("si")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un homme ?")
    col2.write("Oui")
    col3.write("Oui")
    col4.write("Oui")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person männlich?")
    col2.write("Ja")
    col3.write("Ja")
    col4.write("Ja")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person female?**")
    col2.write("no")
    col3.write("yes")
    col4.write("yes")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es mujer?")
    col2.write("si")
    col3.write("si")
    col4.write("si")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un femme ?")
    col2.write("Oui")
    col3.write("Oui")
    col4.write("Oui")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person weiblich?")
    col2.write("Nein")
    col3.write("Ja")
    col4.write("Ja")



    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Do you think this person is male or female?**")
    col2.write("female")
    col3.write("female")
    col4.write("male")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Crees que esta persona es hombre o mujer?")
    col2.write("mujer")
    col3.write("mujer")
    col4.write("masculino")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
    col2.write("femelle")
    col3.write("Masculin")
    col4.write("femelle")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
    col2.write("weiblich")
    col3.write("weiblich")
    col4.write("mannlich")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this cricketer male or female?**")
    col2.write("female")
    col3.write("female")
    col4.write("male")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Este jugador de críquet es hombre o mujer?")
    col2.write("mujer")
    col3.write("mujer")
    col4.write("masculino")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ce joueur de cricket est-il un homme ou une femme ?")
    col2.write("femelle")
    col3.write("femelle")
    col4.write("femelle")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist dieser Cricketspieler männlich oder weiblich?")
    col2.write("weiblich")
    col3.write("mannlich")
    col4.write("mannlich")

    # Programmmer
    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("")
    col2.image("./sections/bias_examples/female_programmer.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.GZ3Ol84W4UcOpVR9oawWygHaE7&pid=Api")

    col3.image("./sections/bias_examples/male_programmer.jpeg", use_column_width='always', caption="https://thumbs.dreamstime.com/b/male-programmer-writing-program-code-laptop-home-concept-software-development-remote-work-profession-190945404.jpg")
    
    col4.image("./sections/bias_examples/female_programmer_short_haired.jpeg", use_column_width='always', caption="https://media.istockphoto.com/photos/profile-view-of-young-female-programmer-working-on-computer-software-picture-id1125595211")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("**What is the sex of the person?**")
    col2.write("Female")
    col3.write("Male")
    col4.write("female")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cual es el sexo de la persona?")
    col2.write("mujer")
    col3.write("masculino")
    col4.write("mujer")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Quel est le sexe de la personne ?")
    col2.write("femelle")
    col3.write("Masculin")
    col4.write("femelle")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Welches Geschlecht hat die Person?")
    col2.write("weiblich")
    col3.write("mannlich")
    col4.write("weiblich")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person male?**")
    col2.write("no")
    col3.write("yes")
    col4.write("no")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es hombre?")
    col2.write("no")
    col3.write("si")
    col4.write("no")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un homme ?")
    col2.write("non")
    col3.write("Oui")
    col4.write("non")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person männlich?")
    col2.write("Nein")
    col3.write("Ja")
    col4.write("Nein")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person female?**")
    col2.write("yes")
    col3.write("no")
    col4.write("yes")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es mujer?")
    col2.write("si")
    col3.write("no")
    col4.write("si")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un femme ?")
    col2.write("Oui")
    col3.write("non")
    col4.write("Oui")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person weiblich?")
    col2.write("Nein")
    col3.write("Nein")
    col4.write("Nein")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Do you think this person is male or female?**")
    col2.write("female")
    col3.write("male")
    col4.write("female")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Crees que esta persona es hombre o mujer?")
    col2.write("mujer")
    col3.write("masculino")
    col4.write("mujer")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
    col2.write("femelle")
    col3.write("masculin")
    col4.write("femelle")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
    col2.write("weiblich")
    col3.write("mannlich")
    col4.write("weiblich")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this programmer male or female?**")
    col2.write("female")
    col3.write("male")
    col4.write("female")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Este programador es hombre o mujer?")
    col2.write("mujer")
    col3.write("masculino")
    col4.write("mujer")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ce programmeur est-il un homme ou une femme ?")
    col2.write("femme")
    col3.write("homme")
    col4.write("femme")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist dieser Programmierer männlich oder weiblich?")
    col2.write("weiblich")
    col3.write("mannlich")
    col4.write("weiblich")

    
def app(state=None):
    #kill_tensorboard()
    toc = Toc()
    st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
    
    st.header("Table of Contents")
    toc.placeholder()
    
    toc.header("Introduction and Motivation")
    st.write(read_markdown("intro/intro.md"))
    toc.subheader("Novel Contributions")
    st.write(read_markdown("intro/contributions.md"))
    
    toc.header("Methodology")

    toc.subheader("Pre-training")
    st.write(read_markdown("pretraining/intro.md"))
    # col1, col2 = st.beta_columns([5,5])
    st.image(
        "./misc/article/Multilingual-VQA.png",
        caption="Masked LM model for Image-text Pre-training.",
    )
    toc.subsubheader("MLM Dataset")
    st.write(read_markdown("pretraining/data.md"))
    toc.subsubheader("MLM Model")
    st.write(read_markdown("pretraining/model.md"))
    toc.subsubheader("MLM Training Logs")
    st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
    st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
    
    
    toc.subheader("Finetuning")
    toc.subsubheader("VQA Dataset")
    st.write(read_markdown("finetuning/data.md"))
    toc.subsubheader("VQA Model")
    st.write(read_markdown("finetuning/model.md"))
    toc.subsubheader("VQA Training Logs")
    st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
    st_tensorboard(logdir='./logs/finetune_logs', port=6007)
    
    toc.header("Challenges and Technical Difficulties")
    st.write(read_markdown("challenges.md"))
    
    toc.header("Limitations")
    st.write(read_markdown("limitations.md"))

    #bias_examples()
    
    # toc.header("Conclusion, Future Work, and Social Impact")
    # toc.subheader("Conclusion")
    # st.write(read_markdown("conclusion_future_work/conclusion.md"))
    # toc.subheader("Future Work")
    # st.write(read_markdown("conclusion_future_work/future_work.md"))
    # toc.subheader("Social Impact")
    st.write(read_markdown("conclusion_future_work/social_impact.md"))
    
    toc.header("References")
    st.write(read_markdown("references.md"))

    toc.header("Checkpoints")
    st.write(read_markdown("checkpoints/checkpoints.md"))
    toc.subheader("Other Checkpoints")
    st.write(read_markdown("checkpoints/other_checkpoints.md"))
    
    toc.header("Acknowledgements")
    st.write(read_markdown("acknowledgements.md"))
    toc.generate()