File size: 1,867 Bytes
44c11f2
 
fc3079d
ba57ea8
70de33c
b3c9da2
1efe758
cd12ada
b3c9da2
 
c5c6018
b3c9da2
 
 
 
fc3079d
29e00f0
44c11f2
b3c9da2
44c11f2
fc3079d
 
b3c9da2
fc3079d
1efe758
1e0fe04
b3c9da2
44c11f2
b3c9da2
287b7cd
b3c9da2
 
 
 
 
 
44c11f2
b3c9da2
44c11f2
b3c9da2
44c11f2
b3c9da2
 
 
50aea55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
from apps.utils import read_markdown
from streamlit_tensorboard import st_tensorboard
from .utils import Toc
def app(state):
    toc = Toc()
    st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗")
    st.header("Table of contents")
    toc.placeholder()
    toc.header("Introduction and Motivation")
    st.write(read_markdown("intro.md"))
    toc.subheader("Novel Contributions")
    st.write(read_markdown("contributions.md"))
    toc.header("Methodology")
    toc.subheader("Pre-training")
    st.write(read_markdown("pretraining.md"))
    st.image(
        "./misc/article/Multilingual-VQA.png",
        caption="Masked LM model for Image-text Pre-training.",
    )
    st.write("**Training Logs**")
    st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
    toc.subheader("Finetuning")
    st.write(read_markdown("finetuning.md"))
    st.write("**Training Logs**")
    st_tensorboard(logdir='./logs/finetune_logs', port=6007)
    toc.header("Challenges and Technical Difficulties")
    st.write(read_markdown("challenges.md"))
    toc.header("Limitations")
    st.write(read_markdown("limitations.md"))
    toc.header("Conclusion, Future Work, and Social Impact")
    toc.subheader("Conclusion")
    st.write(read_markdown("conclusion.md"))
    toc.subheader("Future Work")
    st.write(read_markdown("future_work.md"))
    toc.subheader("Social Impact")
    st.write(read_markdown("social_impact.md"))
    toc.header("References")
    st.write(read_markdown("references.md"))
    toc.header("Checkpoints")
    st.write(read_markdown("checkpoints.md"))
    toc.subheader("Other Checkpoints")
    st.write(read_markdown("other_checkpoints.md"))
    toc.header("Acknowledgements")
    st.write(read_markdown("acknowledgements.md"))